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Chapter 1

Introduction

These notes were written to accompany a short four-week course in elementary number
theory which I gave at the University of Western Ontario in Spring 2023. A number of
references were helpful in putting these notes together, especially as sources of exercises
and examples. The main references used were Number Theory by G. E. Andrews; a set
of unpublished lecture notes on elementary number theory by C. M. Mynhardt; Discrete
Mathematics: Number Theory, Modular Arithmetic, and Graph Theory, by S. A. Rankin
& I. J. W. Robinson; Beginning Number Theory by N. Robbins; and Elementary Number
Theory and Its Applications by K. H. Rosen. It is also a pleasure to thank Xiangyuan
Liang, Zirui Si and Sina Babaei Zadeh for numerous corrections which helped to improve
the readability of these notes.

Number Theory, not surprisingly, refers to the study of various sorts of numbers. Of
all the diverse things which we sometimes think of as numbers, the positive integers are in
some sense the most basic and therefore the most important. Among the positive integers,
the prime numbers {2, 3, 5, 7, 11, . . .} play a particularly important role. The Fundamental
Theorem of Arithmetic shows that they are the basic building blocks out of which all positive
integers can be built.

Number theory is perhaps the oldest branch of mathematics and its history stretches back
millennia. Some problems in number theory were considered by ancient mathematicians more
than 2000 years ago, but still remain open today.

For much of its history, number theory was also considered one of the “purest” branches
of mathematics. Pure Mathematics refers to mathematics with no (or very few) applica-
tions; mathematics whose problems are motivated primarily by aesthetics and theoretical
considerations. This paradigm completely changed, however, with the advent of computer
technology. Number theory is now the foundation of modern cryptography on which our
computer security protocols are based. Cryptography is just one of many applications of
number theory which have emerged in the modern era.

The term Elementary Number Theory refers to the part of number theory which does not
make heavy use of other mathematical topics. For example, Analytic Number Theory is a
branch of number theory which utilizes the theory of complex variables and Algebraic Number
Theory is a branch of number theory which makes heavy use of abstract algebra. By contrast,
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problems in elementary number theory can be stated using only basic notions (integers,
primes, divisibility, congruence, etc.) and can be solved without recourse to specialized
tools. Note that elementary number theory does not refer to number theory that is easy!
Much ingenuity may still be needed to devise a proof of a statement, even when no specialized
tools are needed.

A rough overview of the topics covered in these notes is as follows: Chapter 2 covers
basic properties of the integers including a review of induction, the relation of divisibility and
the Euclidean algorithm. Chapter 3 focuses on prime numbers, covering Euler’s proof that
there are infinitely many primes, the unique factorization theorem, Mersenne primes, Fermat
primes, and a brief discussion of the prime number theorem. Chapter 4 covers modular
arithmetic, rings of integers modulo n, Fermat’s little theorem (and Euler’s generalization)
and the Chinese remainder theorem.
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Chapter 2

The Integers

Throughout this course we use the following notations:

• The integers: Z = {0,±1,±2,±3, . . .}

• The natural numbers: N = {0, 1, 2, 3, . . .}

• The positive integers: Z+ = {1, 2, 3, 4, . . .}

• The rational numbers: Q = {a
b
: a, b ∈ Z and b ̸= 0}

• The real numbers: R = (−∞,∞)

2.1 The Principle of Mathematical Induction

Induction is an indispensable tool in our toolkit of proof techniques and we begin with a
short review of it. As we advance through the material, we may become less formal when
we write our induction arguments. However, at least in the early stages, we should aim to
be precise.

First, we recall that the validity of induction as a proof technique is actually an axiom,
rather than a theorem to derived from more basic principles.

Axiom 2.1.1 (Induction). Suppose that P (n) is a mathematical statement for every positive
integer n. If P (1) is true and the implication P (k) ⇒ P (k+1) holds for every positive integer
k, then P (n) is true for every positive integer n.

Example 2.1.2. We use the principal of induction to prove that 1+2+3+ . . .+n = n(n+1)
2

for every positive integer n.

Proof. Base case: If n = 1, the left hand side of the given equation equals 1 and the right
hand side equals 1(1+1)

2
= 1, so the statement true.
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Inductive step: Assume that the desired statement is true when n = k, where k is some
positive integer. That is, assume 1 + 2 + 3 + . . . + k = k(k+1)

2
. We must deduce from this

assumption the truth of the statement when n = k + 1. Indeed,

1 + 2 + . . .+ (k + 1) = 1 + . . .+ k + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)((k + 1) + 1)

2
,

so the desired equality is satisfied for n = k + 1.
Conclusion: By the principle of mathematical equation, the desired statement is true for

all positive integers n.

The principle of induction can be modified into several forms which look a bit different
from the axiom stated above, but which are nonetheless equivalent:

• In the so-called strong principle of induction, the inductive step instead consists of
assuming the truth of P (1), . . . , P (k) for some positive integer k, and deducing the
truth of P (k + 1).

• An induction may start at places other than n = 1. It may also sometimes be necessary
to verify several small base cases “by hand”, if we find we are unable to make the
induction step work without imposing an additional assumption that k is larger than
some specific number.

Another important consequence of the principle of induction is that it allows us to define
sequences recursively by specifying sufficiently many “seed values” and giving a recipe for
computing subsequent terms from preceding ones. For example, the Fibonacci sequence
F1, F2, F3, F4, . . . is defined recursively by:

F1 = 1, F2 = 1 and Fn = Fn−1 + Fn−2 for every integer n ≥ 2.

Exercise 2.1.3. Prove that, for every positive integer n, F1 + F2 + . . .+ Fn = Fn+2 − 1.

The principle of induction can also be shown to be equivalent to another standard axiom
called the well-ordering principle. Generally, any proof by induction can be rephrased as a
proof using the well-ordering principle, and vice versa. Doing so is a valuable exercise.

Axiom 2.1.4 (Well-Ordering Principle). If S is a nonempty set of positive integers, S has
a smallest element.
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In general, S does not need to only contain positive integers for the conclusion to apply.
It is enough for S to be a nonempty set of integers which is bounded below in the sense
that there exists some n ∈ Z such that n ≤ m for all m ∈ S. On the other hand, if S is not
bounded below, or if we try to work with numbers other than integers, things can go wrong;
the well-ordering principle may or may not apply.

Exercise 2.1.5.

(a) Prove that any nonempty set of integers that is bounded above has a largest element.

(b) Give an example of a nonempty set of rational numbers which is bounded below, but
doesn’t have a smallest element.

(c) Show that every nonempty subset of {1− 1
n
: n = 1, 2, 3, . . .} ∪ {2− 1

n
: n = 1, 2, 3, . . .}

has a smallest element (meaning a smallest element belonging to the subset).

Here are a couple more induction problems for practice.

Exercise 2.1.6. Fix a real number x ̸= 1. Use the principle of induction to prove the
validity of the geometric series formula

n∑
i=0

xi =
1− xn+1

1− x

for every positive integer n.

Exercise 2.1.7. Conjecture a formula for the sum of the first n even Fibonacci numbers.
Use induction to prove your conjecture is correct. Do the same thing for the sum for the
first n odd Fibonacci numbers.

2.2 Divisibility

The following definition is fundamental.

Definition 2.2.1. Let a and b be integers. If there exists an integer q such that a = qb, we
say that b divides a or that a is divisible by b. We can also say that b is a divisor or a
factor of a. We may also express this relationship in symbols by writing b|a.

You may be used to thinking of b being divisible by a as meaning “the fraction b
a
is an

integer”. That is often OK, but Definition 2.2.1 tends to be cleaner to work with. Also, 0 is
divisible by 0 according to the definition above, but not according to the fraction definition!
This is the only point of disagreement between these definitions, however.

Here are some basic exercises to practice using Definition 2.2.1.

Exercise 2.2.2. Prove the following assertions.
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(a) Every integer divides 0.

(b) Every integer is divisible by 1 and itself.

(c) If a|b and b|a, then a = ±b.

(d) If a is a nonzero integer and b is a divisor of a, then b lies between a and −a. In
particular, the set of factors of a is finite.

The following are basic properties of divisibility which we will use all the time. The
proofs are not difficult and will make good exercises in applying Definition 2.2.1.

Theorem 2.2.3. Let a, b, c be integers.

1. If a|b and b|c, then a|c.

2. If c|a and c|b, then c|(sa+ tb) for all integers s, t.

Proof. Exercise.

Property (1) says that divisibility is a transitive relation; it behaves similarly to human
ancestry. If Alice is descendant of Bob, and Bob is a descendant of Carlos, then Alice is a
descendant of Carlos.

An expression like sa+ tb where s and t are integers is called an integral linear combi-
nation of a and b. Property (2) says that, if a number divides a and b, it also divides all the
integral linear combinations of a and b. For example, both quarters and dimes are divisible
by nickels; property (2) tells us that any amount of change we can make using quarters and
dimes could also be payed out using nickels.

We now give the definition of a prime number. These are, in many ways, the main
protagonists of number theory. Note that every integer n is divisible by 1 and n; these are
its trivial divisors.

Definition 2.2.4. A positive integer n that has a nontrivial positive divisor (i.e. a positive
divisor other than 1 and n) is called a composite number. In contrast, a positive integer p
not equal to 1 whose only positive divisors are 1 and p is called a prime number.

Note that 1 is neither prime nor composite. Instead, it is a unit and there are good
reasons for excluding it from the list of prime numbers.

Prime numbers are central objects in number theory and mathematicians have have
studied them for thousands of years. They are somewhat analogous to atoms, being objects
that cannot be broken down into smaller pieces. The complete list of primes smaller than
100 is as follows:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

A common divisor of two integers a and b is an integer x such that x|a and x|b. If a
and b are not both zero, the set of common divisors of a and b is finite and contains 1 (see
Exercise 2.2.2). Therefore, by the well-ordering principle, the set of common divisors of a
and b has a greatest element, which is necessarily positive (since 1 is included).
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Definition 2.2.5. Let a and b be integers that are not both zero. The greatest common
divisor of a and b, denoted gcd(a, b), is the positive integer that is uniquely characterized
as the largest integer dividing both a and b.

Exercise 2.2.6. Let a, b, c be integers, with a, c ̸= 0. Prove the following formulas:

(a) gcd(a, b) = gcd(|a|, |b|)

(b) gcd(ca, cb) = c · gcd(a, b)

(c) gcd(1, b) = 1

(d) gcd(a, 0) = |a|

Definition 2.2.7. Two integers a and b (not both zero) are said to be relatively prime
if gcd(a, b) = 1. In other words, a and b are relatively prime if the only positive integer
dividing them both is 1.

Exercise 2.2.8. Prove each implication if it is true, or give a counterexample if it is false.

1. If a|c and b|d, then ab|cd.

2. a|c and b|d, then (a+ b)|(c+ d).

3. If n is an odd number and n|2a, then n|a.

Exercise 2.2.9. Prove or give a counterexample: Let a and n be positive integers. If a is
commmon divisor of n and n+ 4, then a ∈ {1, 2, 4}.

Exercise 2.2.10. Prove that, if p is a prime and n is not divisible by p, then p and n are
relatively prime. In particular, prove that, if p and q are distinct prime numbers, then p and
q are relatively prime.

We conclude the section with some divisibility exercises with which to practice proof by
induction.

Exercise 2.2.11. Use induction to prove 6|(n3 − n) for every positive integer n.

Exercise 2.2.12. Use induction to prove 11|(15n − 4n) for every nonnegative integer n.

2.3 The Division Algorithm

The theorem below is known as the division algorithm because we could implement it algo-
rithmically. To find the remainder of a divided by b, we subtract b from a repeatedly until
we encounter a point where doing so again would give a negative result. The final number
reached is the remainder and the number of subtractions is the quotient. Of course, in
practice, there are more efficient strategies than repeated subtraction.
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Theorem 2.3.1 (Division algorithm). Let a, b be integers with b positive. Then, there exist
unique integers q, r such that 0 ≤ r < b and a = qb+ r.

Proof. For simplicity, we assume a ≥ 0 (this typically being the case when the result is
applied). The case a < 0 proceeds similarly and is left as an exercise.

First, let us prove existence. Let S be the set of all integers q such that a − qb ≥ 0.
Observe S is nonempty, as 0 ∈ S. Furthermore, S is bounded above because q ∈ S implies
q ≤ a/b. By the well-ordering principle (see Exercise 2.1.5), there exists a largest element
q0 in S. Set r = a − q0b. By the definitions of q0 and r, we have 0 ≤ r and a = q0b + r. If
r ≥ b occurred, we would have r − b = a − (q0 + 1)b ≥ 0 so that q0 + 1 ∈ S, contradicting
the definition of q0 as the largest element of S. Thus, r < b as required.

Next, let us prove uniqueness in the case a = 0. Clearly q = r = 0 does the job. Could
there exist another expression 0 = qb+ r with 0 ≤ r < b? Then, −qb = r which, since r < b,
is only possible if q = 0, whence r = 0 as well.

Finally, let us prove uniqueness general. Suppose a = q1b + r1 = q2b + r2, with both
representations fulfilling the brief. Without loss of generality, r1 ≥ r2. Subtraction then
yields 0 = (q1 − q2)b + (r1 − r2) where 0 ≤ r1 − r2 ≤ r1 < b so, by the uniqueness result of
the preceding paragraph, q1 = q2 and r1 = r2.

Actually, the division algorithm works with real numbers as well. If a, b > 0, it still
makes sense to ask “how many times does b go into a, and what is the remainder”? To get a
useful definition, we still insist the quotient q is an integer, but the remainder can be a real
number r.

Exercise 2.3.2. Prove that, if a, b ∈ R and b > 0, there exist unique q ∈ Z and r ∈ [0, b)
such that a = bq + r.

In particular (the case of no remainder), we can extend the concept of divisibility to the
real line: we say that a divides b for a, b ∈ R if b = qa for some q ∈ Z (the quotient is still
required to be an integer). Extending the discussion to real numbers gets us into the topic of
how ancient Greeks thought of two quantities as being commensurate. Saying that b divides
a means that we can measure out the length a using a rope of length b. But, even if neither
of a or b divides the other one, they may still have a greatest common divisor. For example 1

6

is the greatest common divisor of 1
2
and 1

3
. Not all pairs of real numbers will have a greatest

common divisor, however. This was a philosophical stumbling point for the ancient Greeks
as it means that some lengths are not commensurate with each other, i.e. not common
multiples of some other (perhaps very small) unit of length. As the following exercise shows,
the possible nonexistence of a greatest common divisor for two real numbers is very much
related to the discovery of irrational numbers, which caused ancient mathematicians much
consternation.

Exercise 2.3.3. Let a be a positive, irrational number. Show that a and 1 are not commen-
surate in the sense that there does not exist any positive number d > 0 such that d divides
both a and 1.
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2.4 The Euclidean Algorithm

How would you compute the greatest common divisor of two integers? In elementary school,
you may have calculated the greatest common divisor by one or both of the following (quite
closely related) methods:

• Method 1: Write out all the divisors, extract the common divisors and choose the
biggest one. For example, ignoring signs, 20 is divisible by {1, 2, 4, 5, 10, 20} and 30
is divisible by {1, 2, 3, 5, 6, 10, 15, 30}. The common divisors are {1, 2, 5, 10}, and the
greatest common divisor is 10.

• Method 2: Factor the numbers into primes and identify the common factors. For
example, to find gcd(12, 100), we might write 12 = 22 ·3 and 100 = 22 ·52 and conclude
that their greatest common divisor is 22 = 4.

It may be a surprise to learn that those familiar methods are actually the hard way of
finding the greatest common divisor in the sense that it would be very difficult to use those
methods on large numbers. Indeed, the fact that it is very computationally expensive to find
prime factors of large integers is the basis of modern cryptography.

The Euclidean algorithm, which we study at the end of this section, is the easy way
(i.e. computationally efficient way) to find the greatest common divisor and bypasses the
issue of factoring the inputs. On first exposure, the Euclidean algorithm may seem more
complicated than the methods outlined above, but this is only an illusion stemming from the
fact we are creatures of limited patience and most of us don’t have experience trying to find
the greatest common divisor of two very large digits where the advantages of the Euclidean
algorithm would shine through.

The Euclidean algorithm has an ancient Greek name1 and is also based on an ancient
Greek idea, relating again to the idea of commensurate quantities. Suppose you have two
ropes of length a and b. What lengths can you measure out using the ropes in combination?
For example, if a = 5 and b = 7, we can measure a length of 1 by measuring out a length of
15 using rope a and then subtract away a measurement of 14 using rope b.

Exercise 2.4.1. Building on the discussion above, argue that a rope of length 5 and a rope
of length 7 can be used in tandem to measure out any integer length.

In general, given a rope of length a and rope of length b, the distances you can measure
are exactly the integral linear combinations of a and b, that is the numbers of the form
sa + tb where s and t are integers. Out of all the lengths that can be constructed out of a
and b, there is a smallest positive one (because of the well-ordering principal). This smallest
positive length is equal to the greatest common divisor, giving us a second characterization.

Theorem 2.4.2 (Bézout identity). Let a and b be integers which are not both zero. Then,
gcd(a, b) is the smallest positive element of the set {sa + tb : s, t ∈ Z}. In particular, it is
possible to write gcd(a, b) = sa+ tb for some s, t ∈ Z.

1The Euclidean algorithm was discovered and used independently by Chinese and Indian mathematicians
as well. Aryabhata called it by the much more exciting name, translating to “pulverizer”.
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Proof. Let S denote the set of positive elements of {sa+ tb : s, t ∈ Z}. Note S is not empty
(for example, a2 + b2 is an element of S). According to the well-ordering principle, S has
a smallest element, which we denote by d. We claim that d divides a. To see this, use the
division algorithm to write a = qd + r where q, r ∈ Z and 0 ≤ r < d. Now, if r > 0, then
r ∈ S (Exercise: Prove this claim), contradicting the definition of d as the smallest element
of S. Therefore, r = 0 which gives that d divides a. A similar argument shows that d divides
b, so d is a common divisor of a and b. On the other hand, any common divisor of a, b must
divide any integral linear combination of a and b (Exercise 2.2.3). In particular, gcd(a, b)
divides d and therefore gcd(a, b) ≤ d. Since gcd(a, b) is supposed to be the biggest common
divisor of a and b, we must have gcd(a, b) = d.

The above theorem is an example of a “min-max principle”; the maximum element of
one set (common divisors of a and b) is actually equal to the minimum element of another
set (integral linear combinations of a and b which are positive). Draw a diagram of two
blobs, one above the other, meeting in a point. Situations like this one occur frequently in
mathematics.

Exercise 2.4.3. Let a and b be integers, not both zero. Prove that, not only is gcd(a, b) the
largest out of all the common divisors of a and b, it is in fact divisible by all the common
divisors of a and b.

Exercise 2.4.4. Prove that, if p and q are any distinct primes, there exist s, t ∈ Z such that
sp+ tq = 1.

Exercise 2.4.5. Given a, b ∈ Z not both zero, show that gcd(a, b) ≤ gcd(a+ b, a− b).

Theorem 2.4.2 says that gcd(a, b) is the smallest positive element of {sa+ tb : s, t ∈ Z}.
Put concretely, gcd(a, b) is the smallest positive distance we can measure using, in tandem, a
rope of length a and a rope of length b. The Euclidean algorithm works by using the division
algorithm to produce smaller and smaller distances that can be constructed out of a and b
until no smaller distance can be found.

The following lemma is the heart of the Euclidean algorithm.

Lemma 2.4.6. If a = bq + r, then gcd(a, b) = gcd(b, r).

Proof. Since a is an integral linear combination of b and r and, conversely, r can be written
as an integral linear combination of a and b, it follows (Exercise: check this) that the set of
the integral linear combinations of a and b is equal to the set of integral linear combinations
of b and r. In symbols: {sa+ tb : s, t ∈ Z} = {sb+ tr : s, t ∈ Z}. Thus, gcd(a, b) = gcd(b, r)
by Theorem 2.4.2.

Theorem 2.4.7 (Euclidean Algorithm). Let a and b be positive integers with a > b. Generate
sequences a = r0, b = r1, r2, r3, . . . and q1, q2, . . . by repeatedly applying the division algorithm
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as shown below:

a = q1b+ r2 0 ≤ r2 < b Line 1

b = q2r2 + r3 0 ≤ r3 < r2 Line 2

r2 = q3r3 + r4 0 ≤ r4 < r3 Line 3

...
...

...

rn−1 = qnrn + 0 rn+1 = 0 Line n

Terminate the procedure on the first line n with rn+1 = 0. Then, gcd(a, b) = rn.

Proof. Since a > b > r2 > r3 > . . ., a smallest n with rn+1 = 0 exists by the well-ordering
principle. By Lemma 2.4.6, we have

gcd(a, b) = gcd(b, r2) = gcd(r2, r3) = . . . = gcd(rn, 0) = rn

as desired.

In summary, the Euclidean algorithm proceeds as follows:

• Input: two positive numbers.

• Recursive step: replace the larger number with its remainder on division by the smaller
number.

• Repeat the recursive step until a remainder of 0 occurs.

• The penultimate remainder, i.e. the last nonzero remainder, is the gcd of the inputs.

Example 2.4.8. Determine gcd(986, 391).

986 = 2 · 391 + 204 Line 1

391 = 1 · 204 + 187 Line 2

204 = 1 · 187 + 17 Line 3

187 = 11 · 17 Line 4

Therefore, gcd(986, 391) = gcd(391, 204) = gcd(204, 187) = gcd(187, 17) = gcd(17, 0) = 17.

With a bit more work, we can furthermore use the Euclidean algorithm to express
gcd(a, b) as an integral linear combination of a and b. In other words, the Euclidean al-
gorithm gives us a way to concretely realize the Bézout identity (Theorem 2.4.2). Perhaps
the most direct way to achieve this is by performing “back substitution” on the equations:
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Example 2.4.9. In the preceding example, rewrite all the lines so the smallest remainder
is on the left, omitting the last line. Boxes are drawn around the remainders to remind us
not to multiply them out; it is their coefficients we are trying to calculate.

204 = 986 − 2 · 391 Line 1

187 = 391 − 204 Line 2

17 = 204 − 187 Line 3

Next, working in reverse order, substitute each line into the one below:

17 = 204 − 187 Line 3

= 204 −
(
391 − 204

)
Substitute Line 2

= 2 204 − 391 Collect coefficients

= 2
(
986 − 2 391

)
− 391 Substitute Line 1

= 2 986 − 5 391 Collect coefficients

So, in the end, we obtain the Bézout identity:

gcd(986, 391) = (2)(986) + (−5)(391) = 17.

Exercise 2.4.10. Use the Euclidean algorithm to show that gcd(1127, 391) = 23. Then, use
back substitution to obtain the Bézout identity 23 = (8)(1127) + (−23)(391).

Exercise 2.4.11. Use the Euclidean algorithm to show that gcd(23121, 8074) = 367. Then,
use back substitution to obtain the Bézout identity 367 = (7)(23121) + (−20)(8074).

The following special case of the Bézout identity is of particular importance.

Proposition 2.4.12. If a and b are relatively prime, then sa+ tb = 1 for some s, t ∈ Z.

Proof. Follows from Theorem 2.4.2.

It turns out being able to write sa + tb = 1 is extremely useful; we will this expression
again and again. One important application is given below.

Proposition 2.4.13. If a and b are relatively prime and a|bc, then a|c.

Proof. Using Proposition 2.4.12, write sa + tb = 1. Then, c = sac + tbc. Because a divides
itself and bc, and because we have expressed c as an integral linear combination a and bc, it
follows that a|c.

Note that the above proposition is fairly obvious if we already know that every positive
integer has a unique prime factorization. However, we have not yet proved this is the case
and, as a matter of fact, the idea of the above proposition will play a key role in our proof
of the unique factorization theorem!
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2.5 The Extended Euclidean algorithm

In the preceding section, we showed how to use the Euclidean algorithm to produce a solution
to the Bézout equation by the method of “back substitution”. This solution is known as
the Euclidean solution. In this section, we show that the Euclidean solution is, in a sense,
the smallest possible solution to Bézout’s equation. In order give a precise definition of the
Euclidean solution, we revisit the problem of obtaining a Bézout identity from the Euclidean
algorithm more formally using the language of recurrence relations. This is sometimes known
as the extended Euclidean algorithm.

Note that the Euclidean solution is never the unique solution to sa + tb = gcd(a, b), as
the following exercise explores.

Exercise 2.5.1. Let a and b be integers, not both zero. Prove there are infinitely many
integer solutions (s, t) to the equation sa+ tb = gcd(a, b).

The following proposition gives the complete answer to the uniqueness question.

Proposition 2.5.2. Let a and b be integers, not both zero, and set d = gcd(a, b). Suppose
(s0, t0) is one solution to Bézout’s equation: sa + tb = d. Then, the full set of solutions
consists of all pairs (s, t) where s = s0 − mb

d
and t = t0 +

ma
d

for some m ∈ Z.
Proof. We assume a and b are nonzero, leaving the case where one of them is zero to the
reader. We furthermore assume, without loss of generality, that a and b are relatively prime,
so that d = 1 (Exercise: justify these reductions). Let x = s − s0 and y = t − t0 so that
xa + yb = 0, i.e. xa = −yb. Since a divides yb from the latter equation, and a and b are
relatively prime, it follows from Proposition 2.4.13 that a divides y and we write y = ma
where m ∈ Z. Similarly, b|x and we write x = nb where n ∈ Z. Thus, nab = −mab
and, because a and b are nonzero, n = −m. Summing up, s = s0 + x = s0 − mb and
t = t0 + y = t0 +ma as desired.

Given input integers a > b > 0, recall the Euclidean algorithm produces a sequence of
remainders (ri) and quotients (qi) according to the following procedure:

a = q1b+ r2 0 ≤ r2 < b

b = q2r2 + r3 0 ≤ r3 < r2

r2 = q3r3 + r4 0 ≤ r4 < r3
...

...

rn−1 = qnrn + 0 rn+1 = 0.

We have gcd(a, b) = rn, where rn is the last nonzero remainder.
Note that, if we treat the sequence (qi) as given, we may think of (ri) as solving the

following recurrence relation:

r0 = a (2.1)

r1 = b

ri+1 = ri−1 − qiri 1 ≤ i ≤ n
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In the extended Euclidean algorithm, we introduce two additional sequences (si) and (ti)
which satisfy the same recurrence relation (2.1), but have different intitial conditions.

Definition 2.5.3. Given integers a > b > 0, the extended Euclidean algorithm pro-
duces, as well as the usual sequences (qi) and (ri) of quotients and remainders, two sequences
(si) and (ti) defined by the following recurrence relations:

s0 = 1 t0 = 0 (2.2)

s1 = 0 t1 = 1

si+1 = si−1 − qisi ti+1 = ti−1 − qiti 1 ≤ i ≤ n

Here n is the stopping time; the time such that rn = gcd(a, b) and rn+1 = 0.

The relevance of the extended Euclidean algorithm to the Bézout identity is assured by
the following theorem.

Theorem 2.5.4. Let a, b be integers with a > b > 0 and let (qi), (ri), (si), (ti) be the
sequences produced by the extended Euclidean algorithm. Then,

sia+ tib = ri 0 ≤ i ≤ n+ 1.

In particular, we have sna+ tnb = rn = gcd(a, b), where rn is the last nonzero remainder.

Proof. Since s0a + t0b = a = r0 and s1a + t1b = b = r1, the theorem is valid for i = 0, 1.
Suppose the theorem is true for i = k − 1 and i = k for some positive integer k. Then,
sk+1a + tk+1b = (sk−1a + tk−1b) − qk(ska + tkb) = rk−1 − qkrk = rk+1 so, by the principle of
induction, the theorem is proved.

Definition 2.5.5. Let a, b be integers with a > b > 0. The Euclidean solution to Bézout’s
equation sa+ tb = gcd(a, b) is the solution given by the extended Euclidean algorithm.

Remark 2.5.6. The back substitution method in the last section gives the same solution to
Bézout’s equation as the extended Euclidean algorithm, as you are welcome to contemplate.

Example 2.5.7. Starting with a = r0 = 1053 and b = r1 = 481, applying the extended
Euclidean algorithm generates the following table:

i qi ri si ti
0 1053 1 0
1 2 481 0 1
2 5 91 1 -2
3 3 26 -5 11
4 2 13 16 -35
5 0 -37 81

We have gcd(1053, 481) = 13. One may check that si(1053) + ti(481) = ri indeed holds for
0 ≤ i ≤ 5. In particular, when i = 4 we obtain (16)(1053)+ (−35)(481) = 13, the Euclidean
solution to the Bézout equation.
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Exercise 2.5.8. Apply the extended Euclidean algorithm to a = 1533 and b = 477, gener-
ating a table like the one in Example 2.5.7. Verify that sia+ tib = ri for all i.

The following theorem makes precise the sense in which the Euclidean solution is minimal.

Theorem 2.5.9. Let a and b be integers with a > b > 0. Set d = gcd(a, b). Suppose that
s0a+ t0b = d is the Euclidean solution to the Bézout equation and sa+ tb = d is some other
solution. Then, the following hold:

1. |s0| ≤ b
2d

and |t0| ≤ a
2d
.

2. |s| ≥ |s0| and |t| ≥ |t0|.

3. If |s| ≤ b
2d

and |t| ≤ a
2d
, then s = s0 and t = t0.

The first of the three statements is the most substantial one and we defer its proof to a
bit later on. For now, we assume it holds and deduce the other two statements.

Proof of Statements 2 and 3. Without loss of generality, we assume that a and b are rela-
tively prime (Exercise: justify this reduction). Thus, d = 1 and the bounds of Statement 1
amount to |s0| ≤ b/2, |t0| ≤ a/2 . By Proposition 2.5.2, we may write s = s0 − mb and
t = t0 +ma for some m ∈ Z. We assume m ̸= 0, or else (s, t) = (s0, t0) and there is nothing
to prove.

For Statement 2, we have |s| + |s0| ≥ |s − s0| = |mb| ≥ b ≥ 2|s0|, whence |s| ≥ |s0|, as
desired. The proof that |t| ≥ |t0| is similar.

For Statement 3, we assume |s| ≤ b/2 and |t| ≤ a/2 both hold and derive a contradiction.
Observe the only distinct numbers in [−b/2, b/2] which are a nonzero integer multiple of b
apart are ±b/2, so we must have {s0, s} = {−b/2, b/2} and. Similarly, {t0, t} = {−a/2, a/2}.
Since both of a pair of Bézout coefficients clearly can’t be negative, the only possibility is
that one of (s, t) and (s0, t0) equals (−b/a, a/2) and the other equals (b/2,−a/2). This,
however, leads to the absurd conclusion that d = −d.

As an alternative to the recurrence relation approach of (2.2), we can instead generate
(si) and (ti) using repeated matrix multiplication. This is an instance of a general principle
connecting linear recurrence relations to matrices and is taken up in the following exercise.

Exercise 2.5.10. Let a, b be integers with a > b > 0. Let (qi), (ri), (si), (ti) be the sequences
produced by the extended Euclidean algorithm. Define

Ei =

[
0 1
1 −qi

]
1 ≤ i ≤ n,

where n is the stopping time. Prove by induction that

Ei · · ·E1

[
a
b

]
=

[
ri
ri+1

]
and Ei · · ·E1 =

[
si ti
si+1 ti+1

]
1 ≤ i ≤ n.
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We use the matrix formalism of the above exercise to run an inductive argument, com-
pleting the proof of Theorem 2.5.9. If you don’t like the matrices, another inductive proof
could be given instead relying on an understanding of the following sentence: “the solution
to a linear recurrence relation is linear in the initial conditions”

Proof of Theorem 2.5.9, Statement 1. Without loss of generality, a and b are relatively prime
so that d = 1 (Exercise: justify this reduction). We proceed by induction on n, the number
of steps needed to execute the Euclidean algorithm on a and b. If n = 1, then b = 1 and
a ≥ 2. The Euclidean solution is (0)a+ (1)b = 1 and, indeed, 0 ≤ b/2 and 1 ≤ a/2.

Next, suppose the number of steps needed to execute the Euclidean algorithm for a and b
is n ≥ 2, and that the theorem holds for all pairs of relatively prime integers requiring fewer
than n−1 steps. Let (qi) and (ri) be the sequences of quotients and remainders arising from
the Euclidean algorithm applied to a and b. In particular, a = q1b+ r2. By the nature of the
Euclidean algorithm, applying the Euclidean algorithm to b and r2 yields the same sequence
of quotients, except q1 is omitted. Thus, according to Exercise 2.5.10,

En · · ·E1 =

[
s t
∗ ∗

]
En · · ·E2 =

[
x y
∗ ∗

]
where sa + tb = 1 is the Euclidean solution for a and b and xb + yr2 = 1 is the Euclidean
solution for b and r2. Irrelevant entries are omitted. Right-multiplying the second matrix
equation above by E1 =

[
0 1
1 −q1

]
, we see s = y and t = x− q1y. By the inductive hypothesis,

|x| ≤ r2/2 and |y| ≤ b/2. Thus, |s| = |y| < b/2 and |t| = |x − q1y| ≤ |x| + q1|y| ≤
r2/2 + q1b/2 = a/2 as desired.

We conclude with an instructive exercise involving the Fibonacci numbers. Recall we
define these by the recurrence F1 = 1, F2 = 1 and Fk = Fk−1 + Fk−2 for k ≥ 3.

Exercise 2.5.11. Apply the extended Euclidean algorithm to two consecutive Fibonacci
numbers a = Fk+1 and b = Fk, where k ≥ 2. What is their greatest common divisor? What
is the Euclidean solution to the Bézout equation? How many steps before the Euclidean
algorithm terminates? Can you find formulas for the terms of the sequences (qi), (ri), (si),
(ti)? Illustrate your findings with a medium-sized example, say a = 89 and b = 55.
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Chapter 3

Prime Numbers

3.1 The infinitude of primes

Recall that a positive integer p is prime if p ≥ 2 and the only positive integer divisors of p are
the trivial divisors 1 and p (Definition 2.2.4). Prime numbers are some of the most studied
mathematical entities in human history. Mathematicians have thought about prime numbers
for thousands of years, yet many important questions about them are still unanswered. We
will encounter several such open problems as we go along. Prime numbers play a key role
in modern crytography which underpins information security. It is commonly suggested
the mathematicians of an alien civilization should also appreciate the importance of prime
numbers.

You are probably aware of the fundamental theorem of arithmetic: every positive integer
can be broken down uniquely as a product of primes. We will prove this in the next section.
For now, the following proposition is a modest step in that direction.

Proposition 3.1.1. Every positive integer n ≥ 2 has a prime factor.

Proof. Let S be the set of positive divisors of n which are ≥ 2. Note that S is not empty
because n ∈ S. By the well-ordering principle, there is a smallest element p ∈ S. If p has a
nontrivial positive divisor, i.e. a divisor d with 1 < d < p, then, by transitivity, d is a divisor
of n which is smaller than p, contradicting the definition of p. Thus, the only divisors of p
are 1 and p itself, so p is prime.

It is sometimes useful to have the following sharper version of the above theorem.

Proposition 3.1.2. A number n ≥ 2 is composite if and only if it has a prime factor p
satisfying p ≤

√
n.

Proof. Exercise for the reader.

Example 3.1.3. According to the above proposition, to determine whether a given positive
integer smaller than 100 is prime or not, you only need to test for divisibility by the primes
smaller than

√
100 = 10, which are 2, 3, 5, 7. For example, the fact that 97 is not divisible
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by any of 2, 3, 5, 7 proves that it is prime. On the other hand, 91 is divisible by 7 and is
composite.

The complete set of primes smaller than 100 is as follows:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

It is not possible to write down a complete list of all prime numbers because there are
infinitely many of them! This was proven in Euclid’s Elements in 300 BC.

Theorem 3.1.4 (Euclid). The set of prime numbers is infinite.

Proof. We shall prove that, given any finite list of primes p1, p2, . . . , pn, there exists a prime
number p which is not on the list. Definem = p1p2 · · · pn. Observe that all of p1, . . . , pn divide
m. Therefore, none of p1, . . . , pn divide m+1, or else they would also divide 1 = (m+1)−m.
By Proposition 3.1.1, there exists a prime p dividing m + 1. This prime p is a prime not
appearing on our list.

Exercise 3.1.5. Suppose n is positive integer and p1 < p2 < . . . < pn are the first n prime
numbers.

1. Give three examples where p1 · · · pn + 1 prime.

2. Give an example where p1 · · · pn + 1 is composite. Does this present a problem for
Euclid’s proof for the infinitude of primes?

Open Problem 3.1.6 (Primorial primes). Are there infinitely many positive integers n
such that p1 · · · pn + 1 is prime, where p1, . . . , pn are the first n primes?

Exercise 3.1.7. Prove that, for every positive integer n, it is possible to find at set of n
consecutive composite numbers. For example, {24, 25, 26, 27, 28} is a set of 5 consecutive
composite numbers. Hint: the factorial is your friend!

The above exercise shows that the gaps between prime numbers can be arbitrarily large.
One can also ask how small gaps between prime numbers can get. The must extremem case
is a pair of prime numbers which are 2 part from one another. Such primes are referred to
as twin primes. For example, {11, 13} and {29, 31} are twin primes.

Open Problem 3.1.8 (Twin prime conjecture). Do there exist infinitely many twin primes?

The twin prime conjecture asks whether there exist infinitely many twin primes ; pairs of
primes which are 2 apart from each other. For a long time, it was not even known whether
there exists a fixed number M (maybe very large) such that there exist infinitely many pairs
of primes within distance M of each other. Eventually, this weaker statement was proven to
be true by Yitang Zhang in 2014 for M = 7× 107. The important thing is that this number
is finite! Since then, a massive collaborative project called Polymath has refined Zhang’s
bound down to M = 246, but the twin prime conjecture itself remains open.
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3.2 The unique factorization theorem

In this section, we prove that every positive integer has a unique expression as a product of
primes. This is sometimes called the fundamental theorem of arithmetic. First, let us show
that every positive integer has at least one expression as a product of primes1.

Proposition 3.2.1. Every integer n ≥ 2 can be expressed as a finite product of primes.
That is, there is a list of primes p1, . . . , pr such that n = p1 · · · pr.

Proof. We prove this by strong induction on n. If n = 2, then n is prime and the proposition
is clearly true. Next, suppose that k ≥ 3 and that the proposition is true for all n with
2 ≤ n < k. If k is prime, then the proposition obviously holds for n = k. On the other
hand, if k is not prime, then it has a prime factor p by Proposition 3.1.1 and we may write
k = pm where 1 < m < k (if m = 1, then k = p is prime, contrary to supposition; if
m = k, then p = 1, which is not a prime). By inductive hypothesis, the theorem holds for
n = m and there exists a list of primes such that m = p1 · · · pr. Adding p to the list, we
have p1 · · · pr · p = mp = k, so the proposition is also valid for n = k. By induction, the
proposition is valid all n ≥ 2.

Note that if an integer n divides even one of a pair of integers a and b, then it also divides
the product ab . Primes are special in that the converse statement is also true. This simple
property is surprisingly important. Indeed, this property is sometimes used to define the
“prime elements” of number systems other than Z.

Theorem 3.2.2. Suppose a and b are integers and p is prime. If p|ab, then p|a or p|b.

Proof. If p|a, we are done, so suppose p does not divide a. Since the only positive divisors of
p are 1 and p, we therefore have gcd(a, p) = 1. Therefore, there exist integers s and t such
that sa + tp = 1 (Bézout’s identity). Using this, we have b = s(ab) + (tb)p. Since both ab
and p are divisible by p, so is any integral linear combination of them, whence b is divisible
by p.

Example 3.2.3. The number 4 divides 6 · 14, but 4 does not divide either 6 or 14. That
can happen for composite numbers! On the other hand, 7 divides 6 · 14, and 7 divides 14.
Because 7 is prime, it was necessarily the case that 7 divides one 6 and 14.

Using induction, we can improve the above result to work for products with more terms.

Theorem 3.2.4. Suppose a1, . . . , an are integers and p is prime. If p|a1 · · · an, then p|ai for
some i ∈ {1, . . . , n}.

Proof. Exercise for the reader.

1You might complain about the positive integer 1. The usual response is that 1 is represented as an
“empty” product of primes. Just as the most agreeable answer to the question “what is the sum of no
numbers?” is “zero”, the most agreeable answer to the question “what is the product of no numbers?” is
“one”. The point is that 0 is the additive identity and 1 is the multiplicative identity; 0 is to addition as 1
is to multiplication. We will usually simply dodge around this issue by considering integers 2 or larger.
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We now come to the theorem on uniqueness of prime factorizations. We know that every
integer n ≥ 2 can be expressed as the product of some finite list of primes (repeats are OK)

n = p1 · · · pr.

Since multiplication is commutative, we could rearrange the factors on the right in any way
and still get the result n. In the theorem below, when we say that every positive integer
n ≥ 2 has a unique prime factorization, this uniqueness is understood to hold up to the
operation of rearranging factors.

Theorem 3.2.5. Every positive integer n ≥ 2 has a unique factorization into primes.

Proof. We prove this by induction on n. It is easy to see that there is only one way to factor
n = 2 as a product of primes. Suppose k ≥ 3 and the theorem is true for every n < k.
Consider two (allegedly equal) prime factorizations of k:

k = p1 · · · pr k = q1 · · · qs.

Let p = p1. Since p|k and k = q1 · · · qs, Theorem 3.2.4 implies the existence of a t ∈ {1, . . . , s}
for which p|qt. Since the only positive divisors of qt are 1 and qt, and p ̸= 1, we must conclude
that p = qt. Thus, we have

k

p
= p2 · · · pr = q1 · · · qt−1qt+1 · · · qs

By inductive hypothesis, the theorem is valid for n = k/p < k, and we may conclude that
the lists p2, . . . , pr and q1, . . . , qt−1, qt+1, . . . , qs are rearrangements of one another. Therefore,
the same is true if we add back the prime p = p1 = qt to both lists, so the theorem is valid
for n = k and hence, by induction, for all n ≥ 2.

The fundamental theorem of arithmetic is very often absorbed at a young age as a “fact”.
Because it is so familiar, it may be hard to shake the impression that the fundamental the-
orem of arithmetic is “obviously true” and does not need a proof. The following (somewhat
näıve) example may help you to feel more like the fundamental theorem of arithmetic needs
a proof.

Exercise 3.2.6. Let E be the set of all positive even numbers. Note that E is closed under
addition and multiplication; we can think of it as a number system unto itself. Define an
element of E to be an even prime if it cannot be factored as the product of two elements of
E. Prove that some elements of E do not have a unique representation as a product of even
primes.

Remark 3.2.7. If you delve further into number theory or abstract algebra, you will en-
counter more convincing examples of number systems where the concept of a “prime number”
is still meaningful, but uniqueness of prime factorization does not hold. Here is a standard
example. Add the imaginary number a = i

√
5 to the integers and consider the larger number

system {m + na : m,n ∈ Z}. It turns out that 6 has more than one prime factorization in
this system. Namely, 6 = 2 ·3 as well as 6 = (1+a)(1−a). Additional background is needed
to make this example precise, however.
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Next, we consider some standard ways to display the prime factorization of a number.

1. If we sort the primes occurring in the prime factorization of n ≥ 2 in increasing order,
and group together the equal ones using exponents, we get that every integer n ≥ 2
has a unique expression of the form

n = pϵ11 · · · pϵkk ,

where p1, . . . , pk are distinct primes, listed in increasing order, and ϵ1, . . . , ϵk are positive
integers. For example,

4400 = 24 · 52 · 111.

2. At least one other formalism is sometimes useful. First, write all the primes in increas-
ing order, i.e. p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, . . .. In this notation, we get that
every positive integer n has a unique expression of the form

n = pϵ11 · · · pϵkk ,

where k is a (sufficiently large) positive integer and ϵ1, . . . , ϵk are nonnegative integers.
An exponent ϵi = 0 corresponds to a prime which does not occur in a given factorization
of p into primes. For example,

4400 = 24 · 30 · 52 · 70 · 112.

The following proposition is an example of a situation where allowing nonnegative exponents
is desirable.

Definition 3.2.8. Let a and b be nonzero integers. The least common multiple of a and
b is the smallest positive integer lcm(a, b) which is both a multiple of a and a multiple of b.

Proposition 3.2.9. Suppose that p1, . . . , pk are distinct primes and

a = ps11 · · · pskk b = pt11 · · · ptkk

where s1, . . . , sk, t1, . . . , tk are nonnegative integers. Then,

1. gcd(a, b) = pϵ11 · · · pϵkk , where ϵi = min(si, ti) for i = 1, . . . , k.

2. lcm(a, b) = pϵ11 · · · pϵkk , where ϵi = max(si, ti) for i = 1, . . . , k.

3. ab = pϵ11 · · · pϵkk , where ϵi = si + ti for i = 1, . . . , k.

Proof. Exercise for the reader.

We conclude this section with some miscellaneous exercises involving prime factorization.

Exercise 3.2.10. Let m = 713 ·1110 ·194 and n = 74 ·1112 ·135. Find the prime factorizations
of gcd(m,n) and lcm(m,n).

25



Exercise 3.2.11. Prove that every positive integer can be uniquely expressed as a power of
2 times an odd number.

Exercise 3.2.12. Determine the prime factorization of 9999.

Exercise 3.2.13. Show that a positive integer is the square of another positive integer if
and only if all of the exponents appearing in its prime factorization are even.

Exercise 3.2.14. Let a and b be positive integers. Prove that, if a3|b2, then a|b.

Exercise 3.2.15. Let n = pϵ11 · · · pϵkk , where p1, . . . , pk are distinct primes and ϵ1, . . . , ϵk are
positive integers.

(a) If d is a positive integer dividing n, what must the prime factorization of d look like?

(b) Come up with a formula for the number of positive integers dividing n.

Exercise 3.2.16. Let n = 26 · 3 · 55. How positive divisors does n have? How many positive
divisors does n have that are relatively prime to 14? How many positive divisors does n have
that are divisible by 12? How many positive divisors does n have that are perfect squares?

3.3 Mersenne primes

In this and the following section, we study prime numbers that can be written in the form
2n ± 1, i.e. primes which are one more or one less than a power of two. Both of these types
of prime numbers are famous and have surprising connections to other mathematics.

Definition 3.3.1. A Mersenne prime is a prime number which can be expressed in the
form 2n − 1, where n is a positive integer.

On Assignment 1, you proved the following.

Proposition 3.3.2. If n is a positive composite number, then 2n−1 is a composite number.

Proof. Exercise for the reader. Hint: use the geometric series formula.

Example 3.3.3. The numbers 4, 6 and 9 are composite. Accordingly, 24−1 = 15, 26−1 = 63
and 29 − 1 = 511 = 7 · 73 are composite.

Proposition 3.3.2 immediately tells us something interesting about Mersenne primes.

Corollary 3.3.4. Every Mersenne prime is of the form 2p − 1 where p is prime.

How often is it the case that 2p−1 is prime for a prime p? We can attempt to investigate
some small cases by hand:
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p 2p − 1 Mersenne prime?
2 3 Yes
3 7 Yes
5 31 Yes
7 127 Yes
11 2,047 No! Equals 23 · 89

So, 2p − 1 is prime for the first four primes, but the streak breaks down at the fifth prime.
Clearly it will be very difficult to make further progress working by hand; computer

assistance is required. Shown below is a list of all the primes less than 100 with a box drawn
around each prime p for which 2p − 1 is a Mersenne prime.

2 , 3 , 5 , 7 , 11, 13 , 17 , 19 , 23, 29, 31 , 37, 41, 43, 47, 53, 59, 61 , 67, 71, 73, 79, 83, 89 , 97

Thus, it appears that prime exponents leading to Mersenne primes become less common as
p increases.

prime p Mersenne prime 2p − 1
2 3
3 7
5 31
7 127
13 8,191
17 131,371
19 524,287
31 2,147,483,647
61 2,305,843,009,213,693,951
89 618,970,019,642,690,137,449,562,111

Table 3.1: The 10 smallest Mersenne primes.

Mersenne primes grow very quickly and play a significant role in the search for extremely
large prime numbers. Many of the largest numbers proven to be prime are Mersenne primes.
Currently, the largest known prime number is the Mersenne prime

282,589,933 − 1,

which has 24, 862, 048 digits when written out in base ten.
Both of the following questions are open at time of writing, though many mathematicians

believe the answer to both of them is probably “yes”.

Open Problem 3.3.5. Are there infinitely many primes p such that 2p − 1 is prime? In
other words, are there infinitely many Mersenne primes?

Open Problem 3.3.6. Are there infinitely many primes p such that 2p − 1 is composite?
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Mersenne primes have a surprising connection to the study of perfect numbers, positive
integers that are equal to the sum of their positive, proper divisors. The ancient Greeks
studied perfect numbers, but were only aware of the four smallest examples: 6, 28, 496, 8128.
The following definition/notation will make it more convenient for us to talk about perfect
numbers.

Definition 3.3.7. Given a positive integer n, we write σ(n) for the sum of all the positive
divisors of n. We call σ the divisor sum function.

Example 3.3.8. σ(100) = 1 + 2 + 4 + 5 + 10 + 20 + 25 + 50 + 100 = 192.

Exercise 3.3.9. Give a formula for σ(pk) where p is prime and k is positive integer. Prove
that σ(pkqℓ) = σ(pk)σ(qℓ) if p and q are distinct primes and k and ℓ are positive integers.
Use what you have learned to efficiently calculate σ(6000).

Exercise 3.3.10. Prove that σ(mn) = σ(m)σ(n) when m and n are relatively prime positive
integers. Give examples to show this formula doesn’t always hold. Note: this exercise says
that σ is an example of “multiplicative arithmetic” function.

Exercise 3.3.11. Prove that a positive number p is prime if and only if σ(p) = p+ 1.

We can think of σ(n) as a sort of measure of how “divisible” the number n is, which
explains the choice of terminology below.

Definition 3.3.12. Let n be a positive integer.

• If σ(n) = 2n, we say n is a perfect number. This is the same as saying that n equals
the sum of its proper positive divisors.

• If σ(n) < 2n, we say n is a deficient number

• If σ(n) > 2n, we say n is an abundant number

Example 3.3.13.

(a) σ(14) = 1+2+7+14 = 24 < 2 ·14, so 28 is a deficient number. It is “not very divisible”.

(b) σ(12) = 1+ 2+ 3+ 4+ 6+ 12 = 28 > 2 · 12, so 12 is an abundant number. It is “highly
divisible”.

(c) σ(6) = 1 + 2 + 3 + 6 = 2 · 6, so 6 is a perfect number. It is right in the middle in terms
of divisibility.

Exercise 3.3.14.

(a) Prove that every prime number is deficient. More generally, prove that pk is deficient
whenever p is prime and k is a postive integer.
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(b) Prove that, if a is an abundant number, then ma is an abundant number for every
positive integer m.

Mersenne primes have an intriguing connection to perfect numbers which was established
in Euclid’s Elements.

Theorem 3.3.15 (Euclid). Let p be a prime for which 2p − 1 is a Mersenne prime. Then
n = 2p−1(2p − 1) is a perfect number.

Proof. Let q = 2p − 1 for brevity. Because n = 2p−1q is the prime factorization of n, we can
see that the positive divisors of n are exactly the integers 2iqj where i ∈ {0, 1, . . . , p − 1}
and j ∈ {0, 1}. Thus,

σ(n) =

p−1∑
i=0

1∑
j=0

2iqj =

p−1∑
i=0

(
2i + 2iq

)
=

p−1∑
i=0

(1 + q)2i = (1 + q)
2p − 1

2− 1
= 2p(2p − 1) = 2n.

Exercise 3.3.16. Reprove Euclid’s theorem using your findings from Exercise 3.3.9 and/or
Exercise 3.3.10.

Euclid’s theorem shows that every Mersenne prime determines a perfect number. To
be more precise, every Mersenne prime determines an even perfect number, because of the
appearance of 2p−1 in the formula. There is no known example of an odd perfect number
and it is a long-standing open question whether any exist at all.

Open Problem 3.3.17. Does there exist an odd perfect number?

Even perfect numbers were also studied by Hasan Ibn al-Haytham who conjectured that
the converse of Euclid’s theorem is true. In other words, he conjectured that even perfect
numbers and Mersenne primes are in one-to-one correspondence with each other. This
conjecture was eventually proven correct by Euler.

Theorem 3.3.18 (Euler). If n is an even perfect number, then n = 2p−1(2p−1) where 2p−1
is a Mersenne prime. That is, p and 2p − 1 are both prime.

Proof. Write n = 2km, where k ≥ 0 and m is odd (see Exercise 3.2.11). Actually, because n
is even, we have k ≥ 1. We have 2n = σ(n), which means

2k+1m = σ(2km) = σ(2k)σ(m) = (2k+1 − 1)σ(m),

using Exercise 3.3.14. The equation above shows 2k+1 − 1 divides 2k+1m and so, because
it is relatively prime to 2k+1, Proposition 2.4.13 implies that 2k+1 − 1 divides m. We may
therefore write m = s(2k+1 − 1) for some positive integer s and arrive at:

2k+1s = σ(m).
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Now, s and m itself are two distinct (why? ) divisors of m = s(2k+1 − 1), so we have

2k+1s = σ(m) ≥ s+m = 2k+1s.

Therefore, the inequality above is an equality and we obtain

σ(m) = s+m

This implies s = 1, or else 1, s,m are 3 distinct divisors ofm and σ(m) ≥ 1+s+m. Therefore,
m = 2k+1 − 1 and, from σ(m) = m+1, we have that m = 2k+1 − 1 is a Mersenne prime (see
Exercise 3.3.11). Relabelling p = k + 1, we have n = 2km = 2k(2k+1 − 1) = 2p−1(2p − 1),
where 2p − 1 is a Mersenne prime.

Exercise 3.3.19. Define a positive integer n to be superperfect if σ(σ(n)) = 2n. Prove
that n is an even superperfect number if and only if n = 2p−1, where 2p − 1 is a Mersenne
prime.

3.4 Fermat primes

Whereas as the last section was about primes one less than a power of two, this section is
about primes one greater than a power of two. For example:

21 + 1 = 3 prime

22 + 1 = 5 prime

23 + 1 = 9 not prime

24 + 1 = 17 prime

25 + 1 = 33 not prime

The first thing we want to do is narrow down the list of exponents n that can possibly lead
to primes 2n + 1.

Proposition 3.4.1. Let b ≥ 2 be an integer. Then bm+1 is composite for every odd number
m ≥ 3.

Proof. Because m is odd, we have the factorization bm +1 = (b+1)(1− b+ b2 − . . .+ bm−1)
(Exercise: check this). Because b > 1 and m ≥ 2, we have 1 < b + 1 < bm + 1, so bm + 1 is
composite.

Corollary 3.4.2. If n is a positive integer such that 2n + 1 is a prime number, then n = 2k

for some nonnegative integer k.

Proof. Write n = 2km where k is a nonnegative integer and m is odd (Exercise 3.2.11).
Define b = 22

k ≥ 2 so that 2n + 1 = bm + 1. If m ≥ 3, then bm + 1 is composite by the
preceding proposition. Therefore, m = 1 and we are finished.
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Definition 3.4.3. The numbers 22
k
+1, where k is a nonnegative integer, are called Fermat

numbers. A Fermat number which is also prime is known as a Fermat prime.

How often does a Fermat number turn out to be a Fermat prime? We can attempt to
investigate some small cases by hand, but computer assistance quickly becomes necessary.
Table 3.2 shows the smallest 7 Fermat numbers and indicates which are prime.

k 2k Fermat number 22
k
+ 1 Fermat prime?

0 1 3 Yes
1 2 5 Yes
2 4 17 Yes
3 8 257 Yes
4 16 65,537 Yes
5 32 4,294,967,297 No
6 64 18,446,744,073,709,551,617 No

Table 3.2: The 7 smallest Fermat numbers.

So, 22
k
+1 is prime for k = 0, 1, 2, 3, 4, but the streak breaks down at k = 5. This refutes

a conjecture of Fermat that all of the numbers 22
k
+1 are prime. Actually, 22

k
+1 is known

to be composite for 5 ≤ k ≤ 32 and heuristics suggest that 22
k
+1 is composite for all k ≥ 5.

In other words, researchers expect that {3, 5, 17, 257, 65537} is the complete set of all Fermat
primes. However, very little about Fermat primes is known for certain. Both of the following
questions are unanswered at the time of writing.

Open Problem 3.4.4. Are there infinitely many Fermat primes?

Open Problem 3.4.5. Are there infinitely many composite Fermat numbers?

Exercise 3.4.6. Observe that, if n is a positive integer, then the polynomial p(x) = xn − 1
has a root x = 1. Observe that, if m is an odd positive integer, then the polynomial
p(x) = xm + 1 has a root x = −1. Connect these observations to the following statements
which we used in our study of Mersenne primes and Fermat primes.

(a) bn − 1 is composite if b ≥ 3 and n ≥ 2.

(b) bn + 1 is composite if b ≥ 2 and m ≥ 3 is odd.

Exercise 3.4.7. Let b and n be integers with b ≥ 2 and n ≥ 1. Prove that, if bn + 1 is
prime, then b is even and n = 2k for some nonnegative integer k. Investigate the primality
of 62

k
+ 1 and 102

k

+ 1 for small values of k.

Exercise 3.4.8. Denote the Fermat number 22
k
+ 1. Show that:

fk = f0f1 · · · fk−1 + 2

for every positive integer k.
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We can use the recurrence relation for Fermat numbers obtained in the preceding exercise
to prove an interesting result.

Proposition 3.4.9. Any two distinct Fermat numbers are relatively prime to one another.

Proof. Consider two distinct Fermat numbers fk = 22
k
+1 and fℓ = 22

ℓ
+1, where 0 ≤ k < ℓ.

Suppose that d is a positive integer dividing both fk and fℓ. From Exercise 3.4.8, we may
write fℓ = f0f1 · · · fℓ−1 + 2. Note that d divides f0f1 · · · fℓ−1, because k < ℓ so fk appears
among f0, f1, . . . , fℓ−1. Thus, from the equation

2 = fℓ − f0f1 · · · fℓ−1,

we conclude that d divides 2. Therefore either d = 1 or d = 2. However, it is not possible
that d = 2 because every Fermat number is odd, and therefore not divisible by 2. Thus, the
ony positive integer dividing fk and fℓ is 1, i.e. fk and fℓ are relatively prime.

The above proposition is somewhat of a vindication for Fermat’s wrong conjecture that
all Fermat numbers are prime. Even though it seems that most fk are not prime, it is still
the case that the prime factors of a given Fermat number are “brand new primes” which do
not appear as prime factors of any previous Fermat number.

Exercise 3.4.10. Use Proposition 3.4.9 to give yet another proof that the set of prime
numbers is infinite.

The remainder of this section will not appear on the assignments or tests.

Fermat primes have an unexpected connection to compass and straightedge constructions.
This is a classical topic in geometry studied by the ancient Greeks. The ancient Greeks knew
how to construct an equilateral triangle, a square and a regular2 pentagon by compass and
straightedge. They also knew how to double the number of sides of a given regular polygon by
compass and straightedge. For about 2000 years, no further constructions of regular polygons
by compass and straightedge were discovered until a young Gauss showed it is possible to
construct a regular 17-sided polygon with compass and straightedge. In fact, Gauss showed
that, if m is any number that is a product of distinct Fermat primes, then it is possible
to construct a regular m-sided polygon by compass and straightedge. Gauss also asserted
(without proof) that no more compass and straightedge constructions of regular polygons
are possible. Eventually, this was proven to be correct by Wantzel. So, for example, we
know it is not possible to construct a 7-sided regular polygon by compass and straightedge.
A proof of any of these results is far outside the scope of this course.

Theorem 3.4.11 (Gauss, Wantzel). It is possible to construct a regular polygon with n sides
if and only if n = 2k for k ≥ 2 or n = 2km where k ≥ 0 and m is the product of one or more
distinct Fermat primes.

Exercise 3.4.12. Is it possible to construct a regular polygon with 306 sides by compass
and straightedge? What about a regular polygon with 170 sides?

2Meaning all sides and and angles are equal
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3.5 The prime number theorem

This section will not appear on the assignments or tests.

In this section we discuss how the primes are distributed amongst the positive integers. An
early result in this area, conjectured by Bertrand and proved correct by Chebyshev, is the
following:

Theorem 3.5.1 (Bertrand’s postulate). For every integer n ≥ 2, there exists a prime number
p satisfying n < p < 2n.

This result gives some modest predictive power over how long one needs to wait to see
the “next prime”. The next prime following n must occur before we get to 2n. Although we
state the above result without proof, a reasonably elementary proof was given by Erdös. An
enthusiastic reader may wish to look this proof up.

The following definition will help us talk about the distribution of primes more precisely.

Definition 3.5.2. Given a positive number x, we write π(x) for the number of primes less
than or equal to x. The function π is called the prime counting function.

Exercise 3.5.3. Use Bertrand’s postulate to prove π(2n) ≥ n for every positive integer n.

Bertrand’s postulate, it turns out, is actually a rather blunt instrument. For large n,
there are many more primes between n and 2n than the 1 prime guaranteed by Bertrand’s
postulate.

Example 3.5.4.

• There are 25 prime numbers smaller than 100, meaning π(100) = 25. The proportion
of integers in the interval [1, 100] which are prime is about 0.25.

• There are 1229 prime numbers smaller than 10000, meaning π(104) = 1229. The
proportion of integers in the interval [1, 104] which are prime is about 0.12.

• There are 5761455 prime numbers smaller than 108, meaning π(108) = 5761455. The
proportion of integers in [1, 104] which are prime is about 0.06.

Note that, every time we square x (which roughly doubles the number of digits), we find
that the proportion of primes in the interval [1, x2] seems to be about half of the proportion
of primes in the interval [1, x]. In particular, prime numbers seem to become less and less
frequent the farther out we look. The prime number theorem gives the precise asymptotics
of the prime counting function. Conventional proofs of the prime number theorem use the
methods of complex analysis and belong to a subject called analytic number theory.

Theorem 3.5.5 (Prime number theorem). π(x) ≈ x

log x
, in the sense that lim

x→∞

π(x)(
x

log x

) = 1.
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Exercise 3.5.6. Argue that the prime theorem can be intepreted as saying “the proportion of
integers in the interval [1, x] which are prime is approximately 1

log(x)
”. Use this interpretation,

and the properties of logarithms, to explain why the number of primes in [1, x] is roughly
half the number of primes in [1, x2].

Exercise 3.5.7. Using Bertrand’s postulate (see Exercise 3.5.3), there are at least 100
primes smaller than 2100. How does this compare to the number of primes smaller than 2100

predicted by the prime number theorem.
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Chapter 4

Modular Arithmetic

4.1 Informal discussion

Modular arithmetic is a framework for doing calculations with divisibility relations. The
modern approach was developed by Gauss in his Disquisitiones Arithmeticae. At first, it
may look as though we are just introducing new words and notations for old concepts that
we have already been studying, but it will hopefully soon become clear that the language of
modular arithmetic is both useful and powerful.

Let’s start with an informal discussion. “Working modulo 14” more or less means re-
garding two numbers which differ by a multiple of 14 as being “equal”. We are allowed to
“cast out 14s” whenever we like. For example:

30 = 16 = 2 = −12 14 = 0 = −14

As a consequence, we only really need to work with the numbers {0, 2, 3, . . . , 13} be-
cause all another integers are equivalent to one of these. More specifically, every integer is
equivalent to its remainder on division by 14. Doing arithmetic (addition, subtraction and
multiplication) may take us outside of this set, but we can always reduce our results by
multiples of 14 to get back. For example:

10 + 9 = 19 = 5 10 · 3 = 30 = 2

It is all well and good to declare 14 = 0 and explore the implications, but what really makes
this useful mathematics is the following principle:

Principle 4.1.1. Working modulo a positive integer is “consistent” with the operations of
arithmetic.

What is meant by that? Well suppose we want to calculate the remainder of 20 · 30
modulo 14. One approach would be to multiply then reduce.

20 · 30 = 600 = 12 because 600 = 42 · 14 + 12.
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Note multiplying first left us with the large number 600 to deal with. Another idea would
be to reduce and then multiply. Let’s try that too:

20 = 6 30 = 2 20 · 30 = 6 · 2 = 12.

Both approaches led us to the same conclusion: 20 · 30 = 12 modulo 14. This is what is
meant when we say that working modulo 14 is consistent with the operations of arithmetic.
Some or all of the numbers in an arithmetical expression can be replaced with equivalent
numbers modulo 14 without affecting the overall result modulo 14.

Let’s do one more example, this time working modulo 9. Let’s exploit the nature of our
base-10 system for representing numbers and the fact that 10 = 1, working modulo 9, to try
to work out whether 7245 is divisible by 9. We have

7245 = 7000 + 200 + 40 + 5 = 7(10)3 + 2(10)2 + 4(10) + 5.

However, because we are working modulo 9, we can replace all the 10s above with 1s, which
gives

7245 = 7 + 2 + 4 + 5 = 18 = 0.

This suggests that 7245 and 0 differ by a multiple of 9 which exactly means that 9 divides
7245. This reasoning is actually legitimate! We have 7245/9 = 805.

4.2 Definitions

Now it is time to make the informal discussion of the preceding section into rigorous math-
ematics. Here is the fundamental definition.

Definition 4.2.1. Let n be a positive integer. We say x is congruent to y modulo n
and write x ≡ y (mod n) if x = y + kn for some k ∈ Z. Writing x ≡

n
y is an acceptable

alternative notation.

More informally put, x ≡ y (mod n) means that “x and y differ by a multiple of n”.

Example 4.2.2.

• x is divisible by n if and only if x ≡ 0 (mod n).

• x is even if and only if x ≡ 0 (mod 2)

• x is odd if and only if x ≡ 1 (mod 2)

• x and y have the same parity if and only if x ≡ y (mod 2)

The following proposition gives a couple of slightly different, but equivalent, ways to
think about congruence modulo n.

Proposition 4.2.3. Let n be a positive integer.
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1. Show that x ≡ y (mod n) if and only if n divides x− y.

2. Show that every x ∈ Z is congruent to exactly one element of {0, 1, . . . , n− 1}, namely
the remainder of x upon division by n. Show that x ≡ y (mod n) if and only if x and
y have the same remainder upon division by n.

Proof. Exercise for the reader.

Congruence modulo n is an example of an equivalence relation, the definition of which
we now recall:

Definition 4.2.4. Let ∼ be a relation on a set X. We say that ∼ is an equivalence
relation if all of the following conditions are satisfied:

1. Reflexivity: x ∼ x for all x ∈ X.

2. Symmetry: If x, y ∈ X are such that x ∼ y, then y ∼ x.

3. Transitivity: If x, y, z ∈ X are such that x ∼ y and y ∼ z, then x ∼ z.

Given x ∈ X, we write [x] = {y ∈ X : x ∼ y} and call [x] the equivalence class of x.

Equivalence relations are closely related to partitions, as the following standard properties
indicate:

• The equivalence classes form a partition of X.

• Given x, y ∈ X, we have x ∼ y if and only if [x] = [y].

Proposition 4.2.5. For any positive integer n, the relation ≡n of congruence modulo n is
an equivalence relation on Z.

Proof.

• Reflexivity: Suppose x ∈ Z. Then, x = x+ 0n, where 0 ∈ Z, so x ≡ x (mod n).

• Symmetry: Suppose x, y ∈ Z and x ≡ y (mod n). By definition, x = y + kn for some
k ∈ Z. Then, y = x+ (−k)n, where −k ∈ Z, so y ≡ x (mod n).

• Transitivity: Suppose x, y, z ∈ Z and that x ≡ y (mod n) and y ≡ z (mod n). That is,
x = y+kn and y = z+ℓn for some k, ℓ ∈ Z. Then, x = y+kn = z+ℓn+kn = z+(k+ℓ)n
where k + ℓ ∈ Z, so x ≡ z (mod n).

Definition 4.2.6. The equivalence class of an integer x is denote with respect to ≡n is
referred to as a congruence class and is denoted [x]n.

37



Example 4.2.7.

[1]7 = {1 + 7k : k ∈ Z} = {. . . ,−6, 1, 8, 15, 22, . . .}
[4]3 = {4 + 3k : k ∈ Z} = {. . . ,−2, 1, 4, 7, 10, . . .}

[99]10 = {99 + 100k : k ∈ Z} = {−1, 9, 19, 29, . . . , 99, 109, . . .}

In contexts when only one modulus n is being considered and confusion seems unlikely,
we may choose to drop the n and simply write [x]. Actually, one sometimes dispenses with
the brackets altogether and simply writes “x” for the congruence class of x, but we will try
to avoid doing that at this introductory level.

The following proposition shows that the operations of addition and multiplication are
consistent with the relation of congruence modulo n. It is a precise version of the vague idea
espoused in Principle 4.1.1 from the preceding section.

Proposition 4.2.8. Let n be a positive integer. Suppose x ≡ x′ (mod n) and y ≡ y′

(mod n). Then,

1. x+ y ≡ x′ + y′ (mod n)

2. xy ≡ x′y′ (mod n)

Proof. Write x′ = x+ kn and y′ = y + ℓn where k, ℓ ∈ Z. Then,

x′ + y′ = (x+ y) + (k + ℓ)n,

where k + ℓ ∈ Z, so x′ + y′ ≡ x+ y (mod n). Also,

x′y′ = (x+ kn)(y + ℓn) = xy + (ky + ℓx+ kℓn)n,

where ky + ℓx+ kℓn ∈ Z, so x′y′ ≡ xy (mod n).

Exercise 4.2.9. Determine (with proof or counterexample) which of the following state-
ments is true for all positive integers m,n, x, y.

(a) If x ≡ y (mod n), then n ≡ −y (mod x).

(b) If x ≡ y (mod n) and m|n, then x ≡ y (mod m).

(c) If x ≡ y (mod n) and n|m, then x ≡ y (mod m).

(d) If x ≡ y (mod n), then mx ≡ my (mod n).

(e) If x ≡ y (mod n) and x and y are divisible by m, then x
m

≡ y
m

(mod n).

(f) If x ≡ y (mod n) and x, y, n are all are divisible by m, then x
m

≡ y
m

(mod n
m
).
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Exercise 4.2.10. Let n be a positive integer. Use modular arithmetic to work out all the
possible remainders of n2 upon division by 3. Hint: start your argument like this: “we
examine 3 cases: n ≡ 0 (mod 3), n ≡ 1 (mod 3) and n ≡ 2 (mod 3)”. Similarly, work out
all the possible remainders of n2 upon division by 6.

Exercise 4.2.11. Use arithmetic modulo 8 to prove that, if x ≡ 7 (mod 8), then it is
impossible to express x as the sum of three nonzero squares.

Exercise 4.2.12. Suppose m and n are positive integers such that 2m + 3 = 7n. Use
arithmetic modulo 8 to prove that m = 2 and n = 1.

Exercise 4.2.13. Use modular arithmetic to prove, with very little computation that 39
divides 53103 + 10353. Hint: to show 39|n, it suffices to show 3|n and 13|n (why?).

Exercise 4.2.14. Prove that a positive integer n is divisible by 3 if and only if the sum of
the digits of its base 10 decimal representation is divisible by 3.

Exercise 4.2.15. Prove that a positive integer is divisible by 11 if and only if the alternating
sum of the digits of its base 10 decimal representation is divisible by 11. For example, if
n = 18, 272, 639, then the alternating digit sum of n is

9− 3 + 6− 2 + 7− 2 + 8− 1 = 22,

so we may conclude that n is divisible by 11.

Example 4.2.16. Let’s find the remainder of 44444444 upon division by 9. In the language of
modular arithmetic, we are trying to find the unique r ≡ 44444444 (mod 9) with 0 ≤ r < 9.
Firstly, using the fact that 10 ≡ 1 (mod 9) and that congruence modulo 9 is compatible
with addition and multiplication, we have

4444 = 4(10)3 + 4(10)2 + 4(10) + 4 ≡
9
4 + 4 + 4 + 4 = 16 ≡

9
7 ≡

9
−2

and so 44444444 ≡ (−2)4444 (mod 9).
Next, rather than raise −2 to such a high power, let’s first see if some smaller power of

−2 is equal to ±1 or 0 (those are the only integers it is easy to take powers of!). We quickly
see that:

(−2)3 = −8 ≡
9
1.

Writing 4444 = 1481 · 3 + 1, we therefore have

(−2)4444 =
(
(−2)3

)1481 · (−2)1 ≡
9
(1)(−2) ≡

9
7.

Thus, 44444444 ≡ 7 (mod 9), i.e. the remainder of 44444444 on division by 9 is 7.
Note we did not even really need to find the quotient 1481 when 4444 was divided by

3. It was enough to know the remainder was 1. We could have used modular arithmetic to
compute 4444 ≡ 1 (mod 3) and got by with even less calculation.
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4.3 Fermat’s little theorem and Euler’s generalization

In this section we state two theorems whose proofs will be returned to at a later point.

Theorem 4.3.1 (Fermat’s little theorem). Let p be a prime number. Let a be an integer
which is relatively prime to p. Then, ap−1 ≡ 1 (mod p).

Note that, since p is prime, saying an integer a is relatively prime to p is the same thing
as saying p does not divide a.

A complete proof of Fermat’s little theorem will be given later. For now, let us note that
only a finite amount of calculation is needed to check the theorem is true for any specific
prime number p.

Example 4.3.2. If p = 5, the claim is that a4 ≡ 1 (mod 5) for every integer a that is not
divisible by 5. Since every integer not divisible by 5 is congruent to exactly one element of
the set {1, 2, 3, 4}, we can prove the theorem in this specific case by checking it holds for
each of these numbers.

a = 1 14 = 1

a = 2 24 = 16 ≡
5
1

a = 3 34 = 81 ≡
5
1

a = 4 44 ≡
5
(−1)4 = 1

Exercise 4.3.3. Prove Fermat’s little theorem for the specific prime p = 7 using the brute
force approach of Example 4.3.2.

Exercise 4.3.4. State in simple terms what Fermat’s little theorem says about the prime 2.

Exercise 4.3.5. Use Fermat’s little theorem to calculate the remainder of 4212345 on division
by 47.

Exercise 4.3.6. Prove that n and n5 have the same last digit in base 10 for every positive
integer n. Be careful! Fermat’s little theorem helps with some cases, but not all.

Exercise 4.3.7. Check that 414 ≡ 1 (mod 15) and 714 ̸≡ 1 (mod 15). This demonstrates
the fact that, if a is relatively prime to n but n is not prime, it may or may not be the case
that an−1 ≡ a (mod n).

Note that “Fermat’s little theorem” is not the same as the more famous “Fermat’s last
theorem” which states that, for every integer n ≥ 3, the equation xn + yn = zn has no
positive integer solutions. The latter was a notorious open problem for hundreds of years.
Fermat claimed to have a short proof which the “margin was too narrow to contain”, but it
is virtually certain he was mistaken on this point. Fermat’s last theorem was finally proved
by Andrew Wiles in the 1990s. Somewhat entertainingly, Wiles proof led to a “continuity
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error” in Star Trek: The Next Generation as Captain Jean-Luc Picard stated the problem
was still open in the 24th century.

Although Fermat’s little theorem does not get as much publicity as its more famous cousin
Fermat’s last theorem, there is a sense in which Fermat’s little theorem is actually the more
important of the two results because it is the first step towards a circle of results called
primality tests. In the field of cryptography, it is important to be able to generate very large
prime numbers. In practice, the way this is done is to pick large numbers at random and use
primality tests to check whether they are primes (or at least “industry-grade primes”, i.e.
numbers that are “probably prime” with extremely high confidence). The following exercise
is intended to give you some flavour of how Fermat’s little theorem could be of some use for
computationally efficient primality testing.

Exercise 4.3.8. The number n = 281487861809153 is not prime. Because of Fermat’s little
theorem, we could prove n is not prime by demonstrating that 2n−1 ̸≡ 1 (mod n). But, is
it feasible for a computer to calculate 2n−1 modulo n? Find a way to do it with only 52
multiplications and reductions modulo n. Hint 1: repeated squaring can be used to compute
22

k
with only k multiplications. Hint 2: Write the exponent n − 1 as a sum of powers of 2

(in other words, write it in binary).

The following exercise gives some indication of the shortcomings of Fermat’s last the-
orem as a test for primality. For yet more disheartening information, one can read about
Carmichael numbers.

Exercise 4.3.9. Let p be prime and set n = 2p − 1. According to Fermat’s little theorem, a
necessary condition for n to be a Mersenne prime is 2n−1 ≡ 1 (mod n). Prove that, actually,
2n−1 ≡ 1 (mod n) regardless of whether or not n is a Mersenne prime, so this “test” is
completely useless here.

Euler proved a generalization of Fermat’s little theorem which doesn’t require p to be
prime. To state Euler’s theorem, we first need a definition.

Definition 4.3.10. Given a positive integer n, we write φ(n) for the number of integers k
such that 1 ≤ k ≤ n and k is relatively prime to n. The function φ is called the Euler
totient.

Example 4.3.11.

• Among {1, 2, 3, 4, 5, 6}, only 1 and 5 are relatively prime to 6, so φ(6) = 2.

• From the list of positive integers up to 15, we remove the multiples of 3 and 5.

1 2 ̸ 3 4 ̸ 5 ̸ 6 7 8 ̸ 9 ̸ 10 11 ̸ 12 13 14 ̸ 15

Then, φ(15) = 8 because the 8 remaining numbers are relatively prime to 15.

• If p is prime, then φ(p) = p− 1 because each of 1, 2, . . . , p− 1 is relatively prime to p.
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The following proposition shows that φ(n) can be calculated very easily from the prime
factorization of n. This is nice for small examples, but not very helpful in general because
factoring large integers is very computationally expensive (that’s the basis of public key
encryption!).

Proposition 4.3.12.

1. If p is a prime and k is a positive integer, then φ(pk) = pk − pk−1.

2. If m and n are relatively prime positive integers, then φ(mn) = φ(m)φ(n).

Proof (first part only). Let p be a prime and k a positive integer. The numbers among
{1, 2, 3, . . . , pk} that are not relatively prime to pk are exactly those numbers that are divisible
by p. That is, the numbers mp where m = 1, 2, 3, . . . , pk−1. We are removing pk−1 elements
from set with pk elements and the remaining count is φ(pk) = pk−pk−1, as desired. We omit
the proof of the second statement (perhaps we will return to it later).

This is not the first time we have encountered a function satisfying the property in the
second part of Proposition 4.3.12. Recall that the divisor sum function σ (Definition 3.3.7)
had the same property (Exercise 3.3.10). Both φ and σ are examples of what are some-
times called multiplicative functions or arithmetic functions. Number theory is full of such
functions.

Example 4.3.13. We apply Proposition 4.3.12 to calculate φ(100).

φ(100) = φ(2252) = φ(22)φ(52) = (22 − 2)(52 − 5) = (2)(20) = 40

Thus, exactly 40 of the positive integers up to 100 are relatively prime to 100.

Exercise 4.3.14. Suppose n = pϵ11 · · · pϵkk is the prime factorization of a positive integer n.
Give a formula for φ(n).

Now we state Euler’s result

Theorem 4.3.15 (Euler’s generalization of Fermat’s little theorem). Let n be a positive
integer. Let a be an integer which is relatively prime to n. Then, aφ(n) ≡ 1 (mod n).

Note this really is a generalization of Theorem 4.3.1 because φ(p) = p − 1 when p is
prime.

Example 4.3.16. We checked φ(15) = 8 in Example 4.3.11. Since 2 is relatively prime to
15, Euler’s theorem predicts that 28 ≡ 1 (mod 15). Indeed:

28 = (24)(24) = (16)(16) ≡
15

(1)(1) = 1.

Exercise 4.3.17. Use Euler’s theorem to efficiently calculate the remainder of 3555555 upon
division by 35.

Exercise 4.3.18. Use Euler’s theorem to efficiently calculate the last two digits of 3444444.
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4.4 The ring of integers modulo n

Recall Proposition 4.2.8 which, roughly speaking, says that addition and multiplication are
compatible with congruence. Because of this, it makes sense to do arithmetic on congruence
classes. Proposition 4.2.8 exactly means that adding/multiplying two congruence classes by
adding/multiplying arbitrarily chosen representatives yields well-defined operations.

Definition 4.4.1. Let n be a positive integer. We denote by Z/n the set of all congruence
classes of integers modulo n. In other words (see Proposition 4.2.3 (b)), we have:

Z/n = {[0], [1], [2], . . . , [n− 1]}.

We define addition and multiplication operations on Z/n by

[x] + [y] = [x+ y] [x][y] = [xy] for all x, y ∈ Z.

The ring of integers modulo n refers to Z/n together with these two operations.

The operations above make Z/n into a number system in its own right with similar
properties to other familiar numbers systems such as the integers Z, the rational numbers
Q, the real numbers R and the complex numbers C. All of these are examples of a general
concept from abstract algebra known as a commutative ring.

Definition 4.4.2. Let R be a set on which operations called addition and multiplication
have been defined; any two elements x, y ∈ R have a sum x + y and a product xy. If all of
the following axioms hold, we call R, together with its operations, a commutative ring.

• Closure: If x, y ∈ R, then x+ y ∈ R and xy ∈ R.

• Associativity: If x, y, z ∈ R, then (x+y)+z = x+(y+z). Since rebracketing doesn’t
change the sum, it makes sense to write x + y + z, omitting the brackets. The same
discussion applies to multiplication: (xy)z = x(yz) and we may simply write xyz.

• Commutativity: If x, y ∈ R, then x+ y = y + x and xy = yx.

• Distributive property: If x, y, z ∈ R, then x(y + z) = xy + xz.

• Additive and multiplicative identities: There are elements 0 and 1 in R with the
property that x+ 0 = x and 1x = x for all x ∈ R.

• Additive inverses: For every x ∈ R, there is an element −x ∈ R with the property
that x+ (−x) = 0.

Proposition 4.4.3. For any positive integer n, the ring Z/n of integers modulo n is a
commutative ring.

Proof. Exercise for a patient reader.
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Proposition 4.4.3 shows that Z/n is similar in many ways to other familiar number
systems like Z, Q and R. There are also some important differences however:

• Z/n only has finitely many elements, namely n.

• We cannot always “cancel” a nonzero element from an equation in Z/n. For example,
working in Z/15, we have [3][4] = [3][9] where [3] ̸= [0], but we cannot cancel [3]
because [4] ̸= [9].

• It is sometimes possible for two nonzero quantities to multiply to zero in Z/n. For
example, working in Z/15 again, we have [3][5] = [0] even though [3], [5] ̸= [0].

The following definition will help us make sense of the issues raised above.

Definition 4.4.4. Let R be a commutative ring and let a ∈ R. We say a ∈ R is a unit if
there exists b ∈ R such that ab = 1. We say a is a zero divisor if there exists a nonzero
b ∈ R such that ab = 0.

Remark 4.4.5. The reader is warned that, in some mathematical contexts, the word “unit”
refers specifically to the identity element 1. This clashes with the way we use the word above,
to refer to all the elements that are invertible with respect to multiplication.

Example 4.4.6. Working in the integers Z, the only units are 1 and −1 and the only zero
divisor is 0 itself. Working in the rational numbers Q, every nonzero rational number is a
unit, and the only zero divisor is 0 itself.

Here are some important properties of units:

Proposition 4.4.7 (Properties of units). In any commutative ring R, the following hold:

1. Cancellation: If a, r1, r2 ∈ R and a is a unit, then ar1 = ar2 implies r1 = r2.

2. Uniqueness of multiplicative inverses: if a is a unit of R, then there is exactly
one element of R, usually denoted a−1, with the property that aa−1 = 1.

3. Closure under multiplication: If a, b ∈ R are units, then ab is a unit.

Proof. For the first statement, a is a unit, so ba = 1 for some b ∈ R. Therefore,

ar1 = ar2 =⇒ bar1 = bar2 =⇒ 1r1 = 1r2 =⇒ r1 = r2.

For the second statement, suppose a is a unit and b1, b2 ∈ R both satisfy ab1 = ab2 = 1.
Then, by the first statement, we can cancel a from the equation ab1 = ab2 to obtain b1 = b2.

For the third statement, suppose a, b ∈ R are units. By definition, they have multiplica-
tive inverses a−1 and b−1. Then,

(ab)(a−1b−1) = (aa−1)(bb−1) = (1)(1) = 1,

which shows ab is a unit whose multiplicative inverse is a−1b−1.
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Exercise 4.4.8. Prove that an element of a commutative ring cannot be both a unit and a
zero divisor.

Exercise 4.4.9. Generalize Part 1 of Proposition 4.4.7 by proving that, if a, r1, r2 ∈ R and
a is not a zero divisor, then ar1 = ar2 implies r1 = r2.

Here is an example looking at the units and zero divisors in a specific ring Z/n.

Example 4.4.10. Consider Z/12. Then, [1], [5], [7], [11] are units. Actually, each of these is
its own multiplicative inverse (it won’t always work this way):

[1][1] = [1] [5][5] = [25] = [1] [7][7] = [49] = [1] [11][11] = [−1][−1] = [1].

The remaining elements [0], [2], [3], [4], [6], [8], [9], [10] are all zero divisors, as the equations
below demonstrate:

[0][1] = [0] [2][6] = [12] = [0] [3][4] = [12] = [0]

[8][3] = [24] = [0] [9][4] = [36] = [0] [10][6] = [60] = [0]

We comment briefly on where these equations are coming from. Consider [10]. What should
we multiply it by to make it divisible by 12 so that we get [0]? Well, the prime factorization
of 10 has one 2 and one 5. The prime factorization of 12 has two 2s and one 3. So, we need
to introduce one more 2 and a 3 to make 10 divisible by 12. This is the reason we multiplied
it by 6 = 2 · 3 above.

In the preceding example, we saw that every element of Z/12 was either a unit or a zero
divisor, with no overlap between these two categories (actually, Exercise 4.4.8 shows overlap
is impossible). The following proposition shows there is always a dichotomy like this in the
ring Z/n. Every element is either a unit or a zero divisor, with no overlap. Moreover, there
is a simple way to to tell which elements are which.

Proposition 4.4.11. Let n be a positive integer and let a ∈ Z.

1. If a is relatively prime to n, then [a] is a unit in Z/n.

2. If a is not relatively prime to n, then [a] is a zero divisor in Z/n.

Proof. If a is relatively prime to n, then there exists s, t ∈ Z such that sa+ tn = 1 (Bézout),
whence sa ≡ 1 (mod n) and [s][a] = [sa] = [1]. This means [a] is a unit. If, on the other
hand, a and n are not relatively prime then d = gcd(a, n) satisfies d > 1. Therefore, n

d
< n

which implies [n
d
] ̸= [0]. Furthermore, [a][n

d
] = [an

d
] = [a

d
][n] = [0], so [a] is a zero divisor.

Exercise 4.4.12. Sort out which elements of Z/20 are units and which are zero divisors.
Give equations to check your claims (for example [2] is a zero divisor because [2][10] = [0]).

The appearance of the Bézout equation in Part 1 of the above proposition suggests how
we should go about finding the multiplicative inverse of a given unit in Z/n. Namely, we
should use the Euclidean algorithm! We demonstrate this idea in the following example.
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Example 4.4.13. Since 41 is relatively prime to n = 150, we know that [41] is a unit in
Z/150. How should we go about finding [41]−1, the multiplicative inverse of [41]? The näıve
approach would be to calculate [41][b] for b = 1, 2, 3, . . . , 150 until we find a number satisfying
[41][b] = [1]. However, the vastly more efficient approach is to use the Euclidean algorithm
to find a solution to the Bézout equation.

150 = 3 · 41 + 27 (Running the Euclidean algorithm)

41 = 27 + 14

27 = 14 + 13

14 = 13 + 1

1 = 14− 13 (Performing back substitution)

= 14− (27− 14)

= 2 · 14− 27

= 2 · (41− 27)− 27

= 2 · 41− 3 · 27
= 2 · 41− 3(150− 3 · 41)
= 11 · 41− 3 · 150

We obtain the equation 1 = 11 · 41 − 3 · 150 which shows that 11 · 41 ≡ 1 (mod 150). In
other words, [11][41] = [1], or [41]−1 = [11].

Exercise 4.4.14. Using the result of the preceding example, find an integer x such that
41x ≡ 6 (mod 150).

Exercise 4.4.15. For each given a and n find the multiplicative inverse of [a] in Z/n or
explain why this can’t be done.

(a) a = 17, n = 104

(b) a = 54, n = 105

(c) a = 118, n = 303

Exercise 4.4.16. Prove or give a counterexample to each assertion below.

(a) If 2x ≡ 2y (mod 100), then x ≡ y (mod 100).

(b) If 2x ≡ 2y (mod 101), then x ≡ y (mod 101).

(c) If 2x ≡ 2y (mod 100), then x ≡ y (mod 50).
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4.5 The multiplicative group of units modulo n and the

proof of Euler’s theorem

Because the units of Z/n are closed under multiplication (Proposition 4.4.7), it makes sense
to restrict the multiplication operation to the units. This leads us to the following definition.

Definition 4.5.1. Let n be a positive integer. We call the set of units in Z/n under
multiplication the multiplicative group of units in Z/n and denote it by (Z/n)×.

The reader with some background in abstract algebra will see that the (Z/n)× is an
example of an abelian group.

Exercise 4.5.2. Are the units of Z/n closed under addition? Are the zero divisors of Z/n
closed under addition? Are the zero divisors of Z/n closed under multiplication?

Example 4.5.3. Here are a couple examples of multiplicative groups of units mod n

• If n = 12, then (Z/12)× = {[1], [5], [7], [11]}.

• If p is prime, then every integer is either divisible by p or relatively prime by p. Thus,
every nonzero congruence class in Z/p is a unit and (Z/p)× = {[1], [2], . . . , [p− 1]}.

Specializing to p = 5 and working out all the products in the preceding two examples results
in the multiplications tables below.

× 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

Table 4.1: Multiplication table for
(Z/12)× = {[1], [5], [7], [11]}.

× 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Table 4.2: Multiplication table for
(Z/5)× = {[1], [2], [3], [4]}.

Exercise 4.5.4. Work out the multiplication table for (Z/14)×, the multiplicative group of
units modulo 14.

Recall (Definition 4.3.10) that φ(n) denotes the number of integers a relatively prime
to n with 1 ≤ a ≤ n. According to Proposition 4.4.11, such a exactly correspond to the
units in Z/n, leading to the following proposition as a corollary. The proof is an exercise in
unwinding the definitions.

Proposition 4.5.5. Let n be a positive integer. Then, the number of elements of (Z/n)×,
in other words the number of units in Z/n, is equal to the Euler totient φ(n).
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We now return to give the proof of Theorem 4.3.15, Euler’s generalization of Fermat’s
little theorem, repeated here for convenience:

Theorem. Let n be a positive integer. Let a be an integer which is relatively prime to n.
Then, aφ(n) ≡ 1 (mod n).

First, we point out that, if you know a bit of group theory, Euler’s theorem is trivial.

Proof by group theory. By a corollary of Lagrange’s theorem, if G is any finite group and
g ∈ G, we have g|G| = 1. Since (Z/n)× is a group and φ(n) is its number of elements, we
have [a]φ(n) = [1] for every [a] ∈ (Z/n)×.

Since we don’t have time to set up the basics of group theory, we give another proof. His-
torically, this second proof came before the proof of Lagrange’s theorem. I call the following
proof a “dirty trick” because it makes essential use of the commutativity of multiplication in
(Z/n)×. This could potentially give the reader the impression that this property is needed
when in fact it is not.

Proof by dirty trick. For brevity, define k = φ(n) and g = [a] ∈ (Z/n)×. There are k
elements in (Z/n)× and we list them in some arbitrary way:

h1, h2, . . . , hk.

By the closure property of Proposition 4.4.7, h 7→ gh defines a function (Z/n)× → (Z/n)×.
Moreover, this function is a bijection because it has an inverse function given by h 7→ g−1h.
Thus,

gh1, gh2, . . . , ghk

is also a list of all the elements of (Z/n)×, possibly permuted in some way. Because the order
of multiplication does not matter in (Z/n)×, both of these lists have the same product:

(gh1)(gh2) · · · (ghk) = h1h2 · · ·hn.

Collecting all the occurrences of g on the left hand side and inserting the identity [1] on the
right hand side, we have

gk · (h1h2 · · ·hk) = [1] · (h1h2 · · ·hk).

By Proposition 4.4.7, we can cancel h1 · hk from both sides of the above equation, which
gives [1] = gk = [a]φ(n). This exactly means that aφ(n) ≡ 1 (mod n), as was required.

Observe that Euler’s formula yields a formula of sorts for the multiplicative inverse of a
unit in Z/n.

Corollary 4.5.6. Suppose that n is a positive integer and a is relatively prime to n. Then,
[a]−1, the multiplicative inverse of [a] in (Z/n)×, is equal to [a]φ(n)−1.

Proof. We have [a][a]φ(n)−1 = [a]φ(n) = [1], by Euler’s theorem.
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It should be noted that the above formula for [a]−1 is impractical from a computational
standpoint. A much faster way to find the multiplicative inverse of [a] is to use the Euclidean
algorithm, as we illustrated in Example 4.4.13.

Next we discuss the concept of the order of an element of (Z/n)×. Although Euler’s
theorem shows that every element of (Z/n)× can be raised to the power φ(n) to get 1, it is
often the case that a smaller power suffices to achieve this.

Example 4.5.7. Consider n = 50. Since φ(50) = φ(2)φ(52) = (1)(52 − 51) = 20, Euler’s
theorem implies that every unit in Z/50, raised to the power 20, gives 1. The following table
shows the powers of 7 and 11 modulo 50 up to the exponent φ(50) = 20.

k 7k mod 50 11k mod 50
1 7 11
2 49 21
3 43 31
4 1 41
5 7 1
6 49 11
7 43 21
8 1 31
9 7 41
10 49 1
11 43 11
12 1 21
13 7 31
14 49 41
15 43 1
16 1 11
17 7 21
18 49 31
19 43 41
20 1 1

Table 4.3: Powers of 7 and 11 modulo 50.

We can see that, while 720 and 1120 are indeed both 1 modulo 50, smaller exponents also
give 1. More specifically, we can see that 7k ≡ 1 (mod 50) whenever k is a multiple of 4 and,
in fact, the sequence of powers of 7 modulo 50 is periodic with period 4. Similarly, 11k ≡ 1
(mod 50) whenever k is a multiple of 5 and the sequence of powers is periodic with period
5. Note as well that these minimal exponents 4 and 5 are divisors of φ(50) = 20.

The following proposition turns our observations from the last example into general
principles.
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Proposition 4.5.8. Let n be a positive integer and let a be relatively prime to n. Then the
following statements hold.

1. There exists a smallest positive integer k with the property that ak ≡ 1 (mod n).

2. For any nonnegative integer m, we have am ≡ 1 (mod n) if and only if k|m.

3. For any nonnegative integers m1 and m2, we have am1 ≡ am2 (mod n) if and only if
m1 ≡ m2 (mod k).

Proof. Towards the first statement note that, as long as the set of positive integers m such
that am ≡ 1 (mod n) is nonempty, the well-ordering principle will guarantee the existence
of a smallest element k. One way to see this set is nonempty is to note that φ(n) belongs
to the set by Euler’s theorem. Let us give a different argument, however, as it illustrates
a useful idea. Note that there are infinitely many positive integers, but only finitely many
possible remainders modulo n. Therefore, there must exist two positive integers m1 < m2

such that am1 ≡ am2 (mod n) (this is a sort of infinite pigeonhole principle). Then, by the
cancellation property (Proposition 4.4.7), we have am ≡ 1 (mod n) where m = m2−m1 > 0.

The “if” part of the second statement is clear if we write am = (ak)m/k. For the “only
if” part, suppose that m is a nonnegative integer for which am ≡ 1 (mod n) and write
m = qk + r where q ≥ 0 and 0 ≤ r < k. Then

1 ≡
n
am = aqk+r =

(
ak
)q

ar ≡
n
ar.

If r > 0, we have contradicted the definition of k, so r = 0 and k|m as desired.
For the third statement, assume without loss of generality that m1 ≤ m2. Then, using

the cancellation property and the second statement, we see

[a]m1 = [a]m2 ⇔ [1][a]m1 = [a]m2−m1 [a]m2 ⇔ [1] = [a]m2−m1 ⇔ k|(m2 −m1).

This exactly says that am1 ≡ am2 (mod n) if and only if m1 ≡ m2 (mod k).

Definition 4.5.9. Given a positive integer n and a relatively prime to n, we call the smallest
positive integer k such that ak ≡ 1 (mod n) the order of a modulo n. We denote the order
by ordn(b), or simply ord(b) if the modulus n is understood from the context.

Example 4.5.10. From Table 4.3, we can see that ord50(7) = 4 and ord50(11) = 5.

Exercise 4.5.11. Calculate the orders of 2 and 3 modulo 7. Calculate the orders of 3 and
7 modulo 10.

Exercise 4.5.12. Let n be a positive integer and let a be relatively prime to n. Prove that
ordn(a) divides φ(n).

Exercise 4.5.13. Calculate the order of 2 modulo 17. Suggestion: Since φ(17) = 16, the
preceding exercise implies that ord17(2) must divide 16. This should cut down on the amount
of computation you need to do.
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Exercise 4.5.14. Let n be a positive integer. Prove that if [a] and [b] are multiplicative
inverses in (Z/n)×, them ordn(a) = ordn(b).

Exercise 4.5.15. Let p be prime. Prove that, if ordp(a) = 2, then a ≡ −1 (mod p).

Exercise 4.5.16. Suppose n is positive integer an a is relatively prime to n. If ordn(a) =
φ(n) we say that a is a primitive root modulo n. It is known every prime number has
a primitive root. Give examples of primitive roots for p = 5, 7, 11, 13. Find the smallest
positive number n which does not have a primitive root.

4.6 Congruence equations and the Chinese remainder

theorem

In this section we study techniques for solving individual congruence equations as well as
systems of congruence equations (the Chinese remainder theorem). This section will be
less rigorous than preceding sections with various details left to the reader to fill in. On
your assessments, the primary expectation is that you should be able to solve congruence
equations, and systems of congruence equations. There will not be much in the way of
proof-based questions drawing from this section.

Definition 4.6.1. A linear congruence equation is an equation of the form

ax ≡ b (mod n)

where a, b, n ∈ Z with n > 0 are given, and x ∈ Z is the variable to be solved for.

One basic observation we can make about linear congruence equations is that, if they
have any solutions at all, then they have infinitely many solutions; if x0 is one solution to
ax ≡ b (mod n), then x0+kn is also a solution for any k ∈ Z. Note however that the spacing
between solutions can be smaller than the modulus n. For example, 5x ≡ 0 (mod 5) is true
for all x ∈ Z.

The following example showcases our main technique for solving congruence equations.

Example 4.6.2. Let’s solve the linear congruence

2x ≡ 5 (mod 29).

The analogous equation in the world of nonmodular arithmetic is 2x = 5 and we find the
solution x = 5/2 by dividing through by 2. What should it mean to “divide by 2” when
we are working modulo 29? The natural thing is to use the multiplicative inverse of [2],
which exists in Z/29 because 2 is relatively prime to 29 (see Proposition 4.4.11). Observe
[2][15] = [30] = [1], so [2]−1 = [15]. When we multiply our congruence equation by 15,
the left hand side becomes congruent to x and the right hand side becomes congruent to
15 · 5 = 75 ≡ 17 (mod 29) and we arrive at

x ≡ 17 (mod 29).
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This congruence is equivalent to the original one and its solutions are simply:

x = 17 + 29k, where k ∈ Z.

It is important to note that multiplying a congruence equation modulo n through by
a number which is a unit modulo n is a reversible process. To get back to the original
congruence, we would just multiply by the unit’s inverse. In other words, the solution set
remains unchanged when we multiply by a unit. We formalize this as a lemma:

Lemma 4.6.3. If u is a unit modulo n, then the following two congruence equations have
the exact same solutions x ∈ Z.

ax ≡ b (mod n) uax ≡ ub (mod n)

Proof. Exercise for the reader.

Let’s look at a different kind of example:

Example 4.6.4. We want to solve the linear congruence

4x ≡ 8 (mod 36).

This time, 4 is not a unit modulo 36, i.e. [4]−1
36 does not exist. We cannot “divide by 4” to

solve for x, at least not if we are only working modulo 36. On the other hand, let’s unpack
what this congruence equation means:

4x = 8 + 36k, for some k ∈ Z.

All the numbers appearing in the above equation are divisible by 4. Dividing through by 4,
we see this is equivalent to:

x = 2 + 9k, for some k ∈ Z.

That is our solution set! The solutions to the original congruence are all x = 2+ 9k, k ∈ Z.

It is important to note that the step used in the example above (dividing the whole
congruence equation including the modulus by some number) is also a reversible process.
To get back to the original congruence, we just multiply by the same number. We formalize
this as a lemma as well.

Lemma 4.6.5. Suppose that d is a positive integer and a, b, n are all divisible by d. Then,
the following congruence equations have the exact same solutions x ∈ Z.

ax ≡ b (mod n)
a

d
x ≡ b

d
(mod

n

d
)

Proof. Exercise for the reader.
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Some congruence equations require us to use the two preceding lemmas in tandem to be
solved. This is demonstrated in the following example.

Example 4.6.6. We want to solve the congruence equation:

36x ≡ 12 (mod 60).

Dividing both sides as well as the modulus by 12 gives:

3x ≡ 1 (mod 5).

According to Lemma 4.6.5, this congruence has the same solutions as the original one. Next,
note [2]5[3]5 = [6]5 = [1]5, i.e. 2 is a multiplicative inverse modulo 5. We “divide by 3”
modulo 5 by multiplying by 2. The resulting congruence is:

x ≡ 2 (mod 5).

According to Lemma 4.6.3, this congruence has the same solutions as the preceding one.
The solutions to this congruence, and therefore to the original one as well, are:

x = 2 + 5k, where k ∈ Z.

Finally, let’s look at an example of a congruence equation that does not have any solu-
tions:

Example 4.6.7. Consider the congruence equation 2x ≡ 1 (mod 4). This means 2x = 1+4k
for some k ∈ Z. However, this is impossible; the left hand side is even and the right hand
side is odd.

The following theorem exactly captures the obstruction to solving a linear congruence
equation.

Theorem 4.6.8. Suppose a, b, n ∈ Z with n positive. Let d = gcd(a, n). Then, the congru-
ence equation

ax ≡ b (mod n).

has a solution if and only if d divides b.

Proof. Suppose x0 ∈ Z is a solution. Thus ax0 = b+ kn for some k ∈ Z. But then, b can be
expressed as an integral linear combination of a and n, so any number dividing both a and
n must divide b as well. In particular, d|b.

Conversely, suppose that d|b. Then, using Lemma 4.6.5, the original congruence has the
same solutions as

a′x ≡ b′ (mod n′),

where a′ = a/d, b′ = b/d and n′ = n/d. However, in this new congruence, a′ and n′ are
relatively prime, so a′ has a multiplicative inverse modulo n′, and we can solve this new
congruence by the method of Lemma 4.6.3.
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Exercise 4.6.9. Find the general solution to each of the following congruence equations, or
explain why no solutions exist.

(a) 5x ≡ 3 (mod 11)

(b) 12x ≡ 16 (mod 92)

(c) 35x ≡ 63 (mod 203)

(d) 30x ≡ 5 (mod 40)

(e) 54x ≡ 81 (mod 105)

Exercise 4.6.10. Prove that, if gcd(a, n) = d and d divides b, then the number of solutions
x to the congruence equation ax ≡ b (mod n) which satisfy 0 ≤ x < n is d.

Exercise 4.6.11. How many integers x with 0 ≤ x < 70 satisfy 49x ≡ 21 (mod 70)? Find
them.

Exercise 4.6.12. A linear diophantine equation is an equation ax+ by = c where a, b, c are
given integers and x, y are integers to be solved for. Assume a, b ̸= 0. Explain why solving
the linear diophantine equation ax+ by = c is equivalent to solving the congruence equation
ax ≡ c (mod b) and also equivalent to solving the congruence equation by ≡ c (mod a).

Exercise 4.6.13. Find the general solution to the diophantine equation 24x + 36y = 500.
How many solutions are there with x, y > 0?

Now we move on to the more general problem of solving systems of linear congruences.

Example 4.6.14. For motivation, consider the following translated quotation taken from
the Sun-tzu Suan-ching written in 3rd century China. Unfortunately, little seems to be
known about the precise identity of this work’s author.

“There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are
left over. How many things are there?”

If we let x be the unknown number of things, then we can rephrase the above problem
as looking for a number x which simultaneously solves the following system of congruences.

x ≡ 2 (mod 3) (4.1)

x ≡ 3 (mod 5) (4.2)

x ≡ 2 (mod 7) (4.3)

We use this example to illustrate a general approach for solving such systems.

• Step 1: The general solution to (4.1) alone is x = 2 + 3r, where r ∈ Z.
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• Step 2: Substitute the general solution to (4.1) into (4.2) to find the general solution
to the pair of equations (4.1) and (4.2). We obtain

2 + 3r ≡ 3 (mod 5)

which is equivalent to

3r ≡ 1 (mod 5).

Multiplying through by 2, which is a multiplicative inverse for 3 modulo 5, we obtain
the equivalent congruence equation

r ≡ 2 (mod 5)

which means

r = 2 + 5s, for some s ∈ Z.

Substituting this into our expression for x, we get that

x = 2 + 3r = 2 + 3(2 + 5s) = 8 + 15s.

The general solution to (4.1) and (4.2) is x = 8 + 15s where s ∈ Z.

• Step 3: Substitute the general solution to (4.1) and (4.2) from Step 2 into (4.3) to
find the general solution to the whole system. We obtain

8 + 15s ≡ 2 (mod 7)

which is equivalent to

15s ≡ s ≡ −6 ≡ 1 (mod 7).

This means exactly that

s = 1 + 7t, for some t ∈ Z.

Substituting back into our equation for x gives

x = 8 + 15s = 8 + 15(1 + 7t) = 23 + 105t.

The general solution to the whole system of congruences is x = 23 + 105t, t ∈ Z.

Indeed 23 has remainder 2 modulo 3, remainder 3 modulo 5, and remainder 2 modulo 7.
Adding multiples of 105 to 23 does not affect the validity of any of our congruences because
105 = 3 · 5 · 7 is divisible by all three of 3, 5, 7.

We first state the Chinese remainder theorem for systems of two congruences and then
extend to the general case using induction. The attentive reader will see that the induction
step more or less emulates the procedure followed in the example above.
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Theorem 4.6.15 (Chinese remainder theorem, case of two equations). Suppose n1, n2 are
relatively prime positive integers and b1, b2 ∈ Z. Then, there exists a simultaneous solution
x0 ∈ Z to the following system of congruence equations:

x ≡ b1 (mod n1)

x ≡ b2 (mod n2).

Moreover, the general solution to the system is x = x0 + sm, s ∈ Z, where m = n1n2.

Proof. Note that the general solution to the first congruence is x = b1 + rn1 where r ∈ Z.
Such an x is a solution to the second congruence too if and only if b1 + rn1 ≡ b2 (mod n2),
which we rearrange to n1r ≡ b2 − b2 (mod n2). Because n1 is relatively prime to n2, this
last congruence is equivalent to one of the form r ≡ r0 (mod n2), where r0 is b2 − b2 times
a multiplicative inverse for n1 modulo n2 and its general solution is r = r0 + sn2. Then, the
general solution to the whole system of congruences is x = b1 + (r0 + sn2)n1 = x0 + sm,
where x0 = b1 + r0n1 and m = n1n2.

Now we extend to an arbitrary number of equations. At its heart, the strategy for solving
more than two equations is simply to solve two at a time.

Theorem 4.6.16 (Chinese remainder theorem, general case). Suppose that n1, . . . , nk are
pairwise relatively prime positive integers and b1, . . . , bk ∈ Z. Then, there exists a simulta-
neous solution x0 ∈ Z to the following system of congruence equations:

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)

...

x ≡ bk (mod nk).

Moreover, the general solution to this system is x = x0 + sm, s ∈ Z, where m = n1 · · ·nk.

Proof. The case k = 1 is trivial. The case k = 2 holds by Theorem 4.6.15 above. Assume
for induction that k ≥ 3 and that the theorem holds when there are only k− 1 congruences.
Then, there exists a simultaneous solution y0 to the first k− 1 congruence equations and the
general solution to the first k − 1 congruences is x = y0 + rn1 · · ·nk−1, r ∈ Z. Restated, the
solutions to the first k−1 congruences are the same as the solutions to the single congruence:

x ≡ y0 (mod n1 · · ·nk−1).

Thus, the full system has the same solutions as the following system of only two congruences:

x ≡ y0 (mod n1 · · ·nk−1)

x ≡ bk (mod nk).

Since n1 · · ·nk−1 is relatively prime to nk, Theorem 4.6.15 shows that this system of two
congruences has a solution x0 ∈ Z and its general solution is x = x0 + sn1 · · ·nk, s ∈ Z. By
the principle of induction, we are finished.
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Exercise 4.6.17. Find the general solution to the following system of congruence equations:

x ≡ 7 (mod 9)

x ≡ 5 (mod 10)

x ≡ 2 (mod 11)

Exercise 4.6.18. Find the general solution to the following system of congruence equations:

x ≡ 6 (mod 9)

x ≡ 3 (mod 11)

3x ≡ 4 (mod 13)

Exercise 4.6.19. Find the general solution to the following system of congruence equations:

x ≡ 1 (mod 3)

x ≡ 2 (mod 4)

x ≡ 3 (mod 5)

Exercise 4.6.20. Find the general solution to the following system of congruence equations:

x ≡ 9 (mod 12)

x ≡ 3 (mod 13)

x ≡ 6 (mod 25)

Exercise 4.6.21. Let n1, n2, . . . , nk be relatively prime positive integers. Note that n1 is
relatively prime to n2 · · ·nk, so there exist s1, t1 ∈ Z such that

s1n1 + t1n2 · · ·nk = 1

Define e1 = t1n2 · · ·nk.

(a) Prove that e1 ≡ 1 (mod n1) and e1 ≡ 0 (mod ni) for i = 2, . . . , k.

(b) Continuing in this way, construct integers e1, . . . , ek such that ei ≡ 1 (mod ni) and
ei ≡ 0 (mod nj) when i ̸= j.

(c) Use the e1, . . . , ek from part (b) to give an alternative proof that, for any b1, . . . , bk ∈ Z,
there exists an x0 ∈ Z simultaneously solving the congruences:

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)

...

x ≡ bk (mod nk)

Hint: build x0 out of e1, . . . , ek.
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